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SUMMARY

This report presents the results of a study to implement convergence acceleration techniques
based on the multigrid concept in the two—dimensional and three—dimensional versions of
the Proteus computer code. The first section presents a review of the relevant literature on the
implementation of the multigrid methods in computer codes fro compressible flow analysis.
The nexttwo sections present detailed stability analysis of numerical schemes for solving the
Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the
bi-grid analysis, respectively. The next section presents details of the computational method
used in the Proteus computer code. Finally, the multigrid implementation and applications to

several two—dimensional and three—dimensional test problems are presented.

The results of the present study show that the multigrid method always leads to a reduction in
the number of iterations (or time steps) required for convergence. However, there is an
overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D
problems than in 3-D problems, thus overall multigrid savings in CPU time are in general
better in the latter. Savings of about 40-50% are typical in 3-D problems, but they are about
20-30% in large 2-D problems. The present multigrid method is applicable to steady—state
problems and is therefore ineffective in problems with inherently unstable solutions.
(Updates for running the multigrid versions of the Proteus computer code and the stability

analysis codes are contained in a supplement to this report.)
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Chapter 1
INTRODUCTION

The field of Computational Fluid Dynamics (CFD) has been substantially developed to
unravel the underlying physics of many complex flow phenomena that are difficult or even
impossible to study experimentally. The success of CFD is directly linked with the rapid
development of computers in the last two decades. A great number of numerical algorithms
have been formulated to resolve the physics that characterize different aerodynamic fluid
flow problems. The necessity to study the finely detailed models of physics in a steady or
unsteady flow demands fine grid resolutions and a good choice of solution technique. For
flows with engineering significance, the full Navier—Stokes equations, very often the
Reynolds—-averaged form, have been found to yield acceptable results for flow
characteristics including heat transfer. However, even for this time-averaged
approximation, the computational cost is often too expensive. To reduce this cost,
acceleration techniques such as residual smoothing, local time stepping, enthalpy damping
and multigrid are introduced. So far, multigrid is considered the most effective, especially
when used to solve a strongly elliptic problem where only one or a few iterations are needed
for convergence. Structurally, multigrid algorithms iterate on a hierarchy of consecutively
coarser and coarser grids to accelerate convergence on the finest grid. However, the total
computational work involved to capture real physical changes with multigrid is effectively

less when compared to single grid computations.



1.1 Historical Review of Multigrid Methods

Multiple grids were first proposed in the form of two—grid level schemes to accelerate the
convergence of iterative procedures by Southwell (1935), Stiefel (1952), Federenko (1961),
amongst others. Full multiple grid methods were introduced for the Poisson equation by
Federenko (1964) and the approach was generalized by Bakhalov (1966) to any
second—order elliptic operator with continuous coefficients. According to Stuben and
Trottenberg (1982), Hackbush (1976) also independently developed some fundamental
elements of the multigrid method. Perhaps the most influential work on the application of
multigrid methods to elliptic type problems is the paper by Brandt (1977) which also
introduced the use of local mode analysis to determine the smoothing rates of multigrid
schemes. Multigrid acceleration was also successfully applied to the transonic potential flow
equation, which is of mixed elliptic-hyperbolic type, by South and Brandt (1976), Jameson

(1979), McCarthy and Reyhner (1982), and a host of other researchers.

Most of the theory of the effectiveness of multigrid schemes pertained to problems with some
measure of ellipticity. However, Ni (1981) proposed a distributed correction multigrid
method based on an explicit scheme for solving the Euler equations in the steady state.
Convergence acceleration due to the multigrid scheme was by at most a factor of five which
was worse than typical speedup factors in applications to elliptic equations. Furthermore the
scheme was only first—order accurate and was restricted to a CFL number of one. Jameson
(1983) proposed an explicit four—stage time stepping multigrid algorithm for the
steady-state Euler equations. The method was second—order accurate and the limiting CFL
number for stability was 2.6—2.8. The mechanism for multigrid convergence acceleration
to steady state in systems with little ellipticity is that larger time steps can be taken on coarser
grids, while still maintaining the same CFL number, such that disturbances are more rapidly
expelled through the boundaries. The interpolation of corrections from the coarse grid to the

fine grid may introduce additional high frequency errors which must be rapidly damped if



the scheme is to be effective. Thus a requirement of any solution scheme to be used
successfully in a multigrid procedure is that it rapidly dampens high frequency modes of the

CITor.

Mulder (1989) presented a multigrid scheme to solve the two dimensional Euler equations
with a finite—~volume method which used van Leer’s flux—vector splitting for upwind
differencing and a symmetric Gauss—Siedel method as a relaxation scheme. Multigrid
speedup factors were roughly nine and six for first—order and second—order accurate
schemes, respectively. Anderson et al. (1988) also found similar multigrid convergence
acceleration rates in the solution of the three—dimensional Euler equations with flux—vector
splitting and three different approximate factorization schemes. Typically, 200—400
multigrid cycles were required for convergence to the level of the truncation errors. An
interesting result was that although the three—factor spatially split factorization was stable
only for CFL numbers below 20, it produced the fastest multigrid convergence of all the

schemes. This was obtained at a CFL number of seven.

Jameson and Yoon (1986) presented finite—volume based multigrid methods for the 2-D
Euler equations using an ADI scheme with approximate factorization. The differential
operators were approximated with central differences with second and fourth—difference
artificial dissipation terms added for stability and convergence. It was found that implicit
fourth difference dissipation was required for efficient multigrid convergence. However,
this required the solution of a block pentadiagonal system which was more expensive than
the block-tridiagonal system resulting from the use of implicit second—difference
dissipation. Compared with the single grid computation the multigrid speedup factor (based
on residual reduction) was about eight in the former and four in the latter. Multigrid methods
coupled with grid sequencing enabled quite rapid establishment of the solution fields, so that
based on the buildup of the supersonic region, the speedup factors in the study above were

twice as large. The problem with the ADI scheme as a baseline solver is that in



three-dimensions, a three—factor split is required and linearized stability analysis shows that
this is only conditionally stable. To alleviate this problem Jameson and Yoon (1987) devised
a multigrid method for 2-D Euler equations which used the lower—upper (LU) factorized
implicit scheme of Jameson and Turkel (1981) as the baseline solver. Yokota and Caughey
(1988) have developed a similar scheme for the calculation of three~dimensional transonic
flow through rotating cascades. The scheme has only two factors and is unconditionally
stable. It is indeed very similar to the flux—vector splitting method based on the
eigenvalue—factored splitinvestigated by Anderson etal. (1988). Their finding that although
the three—factored split (similar to ADI) is only conditionally stable, it provided a better
multigrid convergence rate than the unconditionally stable eigenvalue—split method (similar
to LU), is noteworthy. However, one advantage of the LU scheme is that it requires cheaper
block-bidiagonal inversions compared with block—tridiagonal or pentadiagonal inversions
for an ADI scheme. The latter is necessary if implicit fourth—difference dissipation terms are
used for better accuracy and convergence. Caughey (1988) demonstrated that block—
pentadiagonal inversions in the ADI scheme could be reduced to scalar pentadiagonal ones
by using a local similarity transformation to diagonalize the equations at each point. Thus,
the computational work was reduced by a factor of four, and the decoupled system had
similar convergence characteristics as the original one. Caughey and Iyer (1988) applied the
scheme to solve the Euler equations for a supersonic inlet flow and found that the multignid
speedup factor was only 2.5, i.e., somewhat less than was found in transonic and subsonic
flows. Yokota, Caughey and Chima (1988) also diagonalized the LU implicit multigrid

scheme with no degradation in performance.

So far in this review, we have considered the application of multigrid methods to the Euler
equations or potential flow equations. Several applications to the Navier—Stokes equations
for incompressible fluid flow have been reported (Vanka (1986), Demuren (1989),
Thompson and Ferziger (1989), Demuren (1992)). The relaxation schemes in all these

applications are pressure—based in contrast to time-stepping schemes more common in



compressible flow applications. Multigrid speedup in the range of a few percent to factors of
hundreds have been reported. It is likely that in the latter cases, the baseline relaxation
scheme did not have good convergence properties for the particular applications. However,
one of the attractions of the multigrid method is that a poor single—grid solver may actually
have good high frequency smoothing properties and thus be an effective multigrid relaxation
scheme. Rhie (1989) presented a pressure-based multigrid method for solving the
Navier—Stokes equations over the range of flow speeds encompassing both the compressible
and the incompressible fluid flow. Himansu and Rubin (1988) also presented a novel
pressure—based multigrid method for the reduced Navier—Stokes equations for compressible
and incompressible ﬂﬁid flows. Apart from the obvious difficulties of the treatment of
viscous terms and the implementation of a turbulence model, the solution of the
Navier—Stokes equations usually requires the clustering of grids near walls in order to
resolve the boundary layer, which often increases the stiffness of the system of equations and
slows down the convergence rate of many iterative schemes. Multigrid convergence
acceleration also tended to degrade with increase in Reynolds number. These difficulties fall
under the category of problems with standard multigrid methods classified by Brandt (1977)
as due to the alignment of coefficients of difference equations. He proposed that the problem
be overcome by doing line relaxations in 2-D or plane relaxations in 3-D in the direction of
alignment, or to perform only semi—coarsening of the grids in one of the directions instead of
the more usual full coarsening, which should reduce the anisotropy of the coefficients.
Himansu and Rubin (1988) implemented some aspect of both strategies with some success.
Mulder (1989) considered the problem of alignment in somewhat more details and found
that semi—coarsening in one direction was inadequate to cure it. Rather, it must be used in
several directions at every grid level. Hence, in a 2-D problem two coarse grids are created
foreach finer grid, which implies that the total number of grid points and hence the operation
count would be the same at each grid level. Such a scheme would negate one of the

advantages of the multigrid method, namely, that all the computational work in performing



relaxations on coarse grids was cheaper than comparable work on the finest grid. So he
devised a special procedure which ensured that on coarse grids, the total number of grids
points was reduced and less computational work was done. The resulting scheme was shown
to be efficient in resolving some flows with alignment, but it appears to be rather complicated
to implement, and it is doubtful that it will find its way into a general purpose computer code

anytime soon.

Implementation of the multigrid method in time-stepping solution schemes for the
compressible Navier—Stokes equations appear to be a straightforward extension of that for
the Euler equations. Although, for the reasons given above, worse performance may be
expected. Chima, Turkel and Schaffer (1987) compared implementations of three types of
multigrid methods in explicit time—stepping multistage solution methods for Euler and
Navier-Stokes equations. They found the Full multigrid-Full approximation storage
(FMG-FAS) method proposed by Brandt (1977) to be the most efficient producing speedup
factors of about 8.5 in the solution of the Euler equations for selected problems, but only
about 2.1 in the solution of the Navier-Stokes equations. Multigrid schemes which use
explicit time—stepping algorithm to solve the 3-D, compressible Navier-Stokes equations
have also been reported by Armone and Swanson (1988), Radespiel et. al (1990) and
Swanson and Radespiel (1991). These are mostly central-differencing approximation
" methods, and the choice of artificial dissipation was found to be very important for efficient

convergence. Yokota (1989) extended the previous implementation for the Euler equations

(Yokota et. al, (1988)) to the Reynolds—averaged, Navier—Stokes equations. The k — &
turbulence model was used to approximate the Reynolds stresses. Application to the
calculation of the three—dimensional flow through blade passages showed convergence rates
similar to those for the Euler equations. The use of wall-functions meant that the boundary
layer need not be fully resolved so that grids with very high aspect ratios could be avoided,

and hence, the lack of performance degradation. A novel method for solving the



compressible, steady, Navier—Stokes equations was presented by Koren (1990). A
first—order accurate upwind method with good smoothing properties was used for the
discretization of the equations. Second-order accuracy was achieved through defect
correction. The whole multigrid scheme exhibited good convergence characteristics in

smooth flows, but somewhat poorer performance in non—smooth flows with shocks.

In the computation of flows in very complex geometries such as around multi-element
airfoils or in complex inlet sections, two approaches are popular: unstructured grids or
multiple blocks of structured grids. Multigrid acceleration has also been achieved in
solutions of the Euler and Navier—Stokes equations with either approach. Mavripilis (1988,
1990) has demonstrated good multigrid convergence for the solution of the Euler equations
on unstructured triangular meshes. Mavripilis and Jameson (1990) presented a similar
implementation for the Navier—Stokes equations. Multigrid, multiblock methods were
presented for the Euler equations by Yadlin and Caughey (1991) and for the Navier—Stokes
equations by Baysal et. al. (1991) and Elmiligui (1992).

1.2 Time Integration

Accurate evolution of time—dependent fluid flow problems and the stability of numerical
schemes are greatly dependent on the type of time integration employed. Time integration
techniques that have been used to solve the Navier-Stokes equations can be broadly

classified as either explicit or implicit schemes.

In explicit methods, a single set of unknown vectors that are required to be solved appears on
the one side of the algebraic equations resulting from discretization. Solutions to these
vectors at the present time are completely dependent on the solutions at previous times.
Explicit methods are very easy to work with and need fewer operation counts, especially for
unsteady problems. They are very efficient for unsteady flows with little variation in velocity

and mesh density. However, they suffer from severe limitation on the time step due to



stability requirements. Where stability requirements dictate very small time steps, the
temporal accuracy may be impaired and/or the computation time to drive the solution to
steady state may become excessive. Also explicit techniques demand that each equation
solved should have a time derivative term, but in incompressible flow this is absent in the
continuity equation. In this case a special treatment (e.g. the introduction of artificial

compressibility) may be necessary. This, of course, detracts from its advantages.

Implicit methods are desirable especially for stiff problems where disparate time scales are
associated with the governing equations; e.g., in combustion processes. Implicit methods are
unconditionally stable and thus allow for larger time steps, limited only by accuracy
requirements, non—linearity and boundary treatment. Although they require larger operation
counts when compared with explicit schemes, they may be optimum in time—dependent
problems when the time scale of the unsteady phenomenon is much larger than the time step
allowed by the Courant-Fredriechs—Lewis (CFL) condition (e.g., flow along an oscillating
airfoil). The possibility of utilizing a larger time step than the CFL limit leads to a welcome
gain in computational efficiency. Since a system of algebraic equations is solved either by
direct or iterative methods at each time step, the implicit difference operator is constructed to
guarantee diagonal dominance for convenient resolution of the equations. Sometimes in
order to make the computation of the algebraic set of equations amenable to the tridiagonal
matrix solution method, an implicit scheme can also be cast into a predictor—corrector form,
where the implicit term is approximately factored into a set of smaller terms either over space
or eigenvalue. The most popular methods include the Alternating Direction Implicit (ADI),
the Lower and Upper (LU) decomposition and some upwind based factorization methods. In
this work several kinds of approximate factorization schemes will be investigated for

stability.



1.3 Stability Analysis

Although implicit numerical schemes allow for larger time steps for advancing the solution
of the Euler and Navier—Stokes equations to steady state, approximate factorization (AF) is
often introduced for efficiency. In the approximate factorization method, the complicated
multi-dimensional matrix equation obtained at each time step is approximately factored into
simpler one—dimensional terms which are easily invertible. Although this technique reduces
the computational cost by taking advantage of the Tridiagonal Method (TDM), the
approximation introduces errors that may place limitations on the CFL number and, thus, on
the overall efficiency of the algorithm. As observed by Thomas et al. (1985), the
approximately factored scheme has even greater stability restrictions in 3-D, and also an
optimal convergence time step that is not known a priori. Therefore, to avoid the long and
costly approach of trial and error of obtaining an optimal CFL number, it is highly desirable
to carry out a stability analysis for any numerical scheme. Some researchers have found that
analyzing scalar equations such as the convection or the diffusion equation can provide
insight into the stability requirements for Euler and Navier-Stokes equations. Beam and
Warming (1978) employed a combination of these scalar equations to approximate the
restriction that were placed on their ADI methods for compressible Navier—Stokes
equations. Jameson and Yoon (1986) and Caughey (1988), among others, used the scalar
convection equation as a model problem for the Euler equations to investigate appropriate
conditions for multigrid implementation. Rather than utilizing model equations, Jespersen
and Pulliam (1983) developed a technique whereby Fourier analysis is extended to the actual
coupled equations for the quasi-one—dimensional Euler equations. Jespersen (1983) further
extended this technique to the 2-D Euler equations in order to find the best conditions at
which to implement multigrid for a transonic flow. Thomas etal. (1985), von Lavante (1986)
and Anderson etal. (1988) have also utilized a similar approach in the stability analysis of the

Euler equations for certain approximate factorization and relaxation schemes. Finally,
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Demuren and Ibraheem (1993, 1994) have also adopted this approach to investigate the
stability of certain implicit solution techniques of the 3-D Euler and Navier—Stokes
equations. Utilizing the frozen coefficients from actual supersonic and transonic flow fields
of a quasi 1-D Euler equations, they further established the suitability of using uniform flow

field in the stability analysis.

Substantial progress has been made to develop the multigrid method both theoretically and
practically in all aspect of physics. However, the most influential work on the application of
multigrid methods to elliptic type problems is, perhaps, that of Brandt (1977) who also
proposed the use of local mode analysis to determine the smoothing rate of multigrid

schemes.

In local mode analysis, the maximum eigenvalue (called the smoothing factor) of a particular
relaxation technique computed over only the high—frequency modes is used as a measure of
the relaxation’s effectiveness in amultigrid scheme since, in this case, the role of relaxation is
not to reduce the total error but to smoothen it out; i.e., remove the high—-frequency
components. It is assumed that the high—frequency modes have short wavelength that are
spatially decoupled and that all high—frcqucpcy waves are completely “killed” on the fine
grid and are not visible to the coarse grids. This, however, is not always the case since the
inter—grid processes also influence the convergence rate. Brandt (1991) presented theoretical
considerations for including the transfer processes in the local mode analysis in what s called
the bi—grid method. Also, some theoretical background is given by Stuben and Trottenberg
(1982) on how to compute a more realistic amplification factor for multigrid methods based
on the bi—grid analysis, where some convergence norms were computed for the Poisson and

Helmholz equations.

A number of works exist where the smoothing factor has been used to predict multigrid
performance in practice. However, the bi—grid analysis is becoming more attractive because

of its better accuracy and reliability. Van Asselt (1982) used the bi—grid analysis to determine
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the proper amount of artificial viscosity to add at the different levels of coarse grids in a
multigrid application. Mulder (1988, 1989) has also used the bi—grid method to construct an
effective semi—coarsening in a multigrid method that can solve the problem of strong
alignment which often occurs in convection problems. To select a relaxation scheme for a
multigrid method suitable for a parallel solution of a time—dependent problem, Horton and
Vandewall (1993) employed this technique using the heat equation as their model problem.
The cause of the poor multigrid convergence rate that is experienced in high—Reynolds
number flows (where the coarse grid corrections fail to approximate the fine grid problem
well enough for certain components) has also been investigated by Brandt and Yavneh
(1993) using the bi—gﬁd method. In an effort to develop an effective multigrid algorithm for
Navier—Stokes solutions on an unstructured grid with Q(N) complexity, Morano (1992),
and Morano and Dervieux (1993) have used the bi—grid analysis on a 1-D model scalar
convection equation with periodic boundary conditions. More recently, Ibraheem and
Demuren (1994a) also presented some convergence norms for the Burger’s equation based

on bi-grid analysis.

Although implicit numerical schemes are becoming very popular, only few works exist to
show the effectiveness of multigrid methods in these schemes especially when approximate
factorization is introduced. Jameson and Yoon (1986) and Caughey (1988), for example,
used the smoothing factor and scalar convection equation as a model for the Euler equations
to investigate multigrid performance. Anderson et. al. (1988), and Demuren and Ibraheem
(1993) have also computed the smoothing factors on the actual coupled Euler equations for
some popular approximate factorizations. The latter work investigated the Navier-Stokes
equations as well. In order to compare the predictive capability of smoothing factors with the
spectral radius obtained from bi—grid analysis, Ibraheem and Demuren (1994b) considered
the full Euler and Navier—Stokes Equations solved with different numerical schemes. In this
work, amplification, smoothing and bi-grid factors for various implicit scheme solution

methods for Euler and Navier-Stokes equations will be documented.
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1.4 Objectives

The objectives of this work are as follows:

(1) To formulate von—Neumann type of stability analysis for the 1-D, 2-D and 3-D Euler
and Navier—Stokes equations using various numerical schemes. Three upwind—difference
based factorizations and two central-difference based factorizations will be selected for the
Euler equations. In the upwind factorizations, two popular flux—vector splitting methods,
one by Steger—Warming and the other by van Leer, will be used. The Lower and Upper (LU)
factorization, and the Beam—Warming ADI methods will be assumed as the base—line
algorithms for the central-difference schemes. Further, smoothing factors will be computed

to establish the effectiveness of the selected schemes for multigrid application.

(2) To present a procedure for utilizing the bi—grid amplification factor as a more accurate
tool for predicting practical multigrid performance in the above selected schemes. The
predictive capability of the bi—grid method will be established using several model
equations, including diffusion, convection and the Burger’s equations; and several
time-stepping methods, such as Euler forward explicit scheme, Runge—Kutta multistage

scheme, a fully implicit scheme, and the semi-implicit scheme.

(3) To develop an efficient multigrid algorithm to solve steady state problems governed by
the 2-D and 3-D Navier-Stokes equations based on the results from the above analyses for
the Beam—~Warming ADI method. The multigrid method is to be implemented in the two and
three dimensional versions of the Proteus computer code (Towne et. al 1990, 1992), and the
efficiency of the multigrid acceleration is to be demonstrated by application of the code to

several test problems.
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1.5 Report Outline

In Chap. 2, various approximate factorization methods are investigated for stability and their
amplification factors and smoothing factors are computed. Detailed discussion is provided
for the bi-grid analysis in Chap. 3. The bi—grid amplification factor for model problems as
well as for Euler and Navier-Stokes equations are then computed under various numerical
schemes. A brief description of the mathematical formulation of the Beam—Warming ADI
method is presented in Chap. 4 for the Navier-Stokes equations, and a steady multigrid
technique is introduced for this formulation to solve various steady state cases in Chap. 5.

Finally, future research directions are pointed out in Chap. 6.
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Chapter 2
SINGLE-GRID STABILITY ANALYSIS

In this chapter, the convergence characteristics of various approximate factorizations for the
3-D Euler and Navier-Stokes equations are examined using the von—Neumann stability
analysis method. Three upwind-difference based factorizations and several
central-difference based factorizations are considered for the Euler equations. In the upwind
factorizations, both the flux-vector splitting methods of Ste ger—Warming and van Leer are
considered. Analysis of the Navier-Stokes equations is performed only on the
Beam-Warming central-difference scheme. In each case, the smoothing factor that is often
used in predicting multigrid performance are also computed. Some issues central to stability

analysis are further clarified.
2.1 Theory and Analysis

The Fourier analysis is adopted to study the stability analysis of the coupled Euler and
Navier-Stokes equations. A discrete analog of these equations is formulated based on
various approximate factorizations in this section. The Euler equations are first analyzed
using upwind and LU factorizations. The ADI factorization is formulated for the

Navier-Stokes equations with the Euler equations as a degenerate case.
2.1.1 Upwind Approximate Factorizations for Euler Equations

The conservation form of the 3-D Euler equations in Cartesian coordinates can be written as:
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where Q is the solution vector and E, F, G are the conserved inviscid fluxes:

T
= lo, ou, ov, ow, ge,l

(2.2)

0 =1
T
E = [ou, ou® + p, ouwv, ouw, (0, + p)u]
T
F = [Qv, ovu, ov? + p, oww, (0e, + p)v]
G

T
= [Qw, owu, owv, ow* + p, (o€, + p)w]

If the Euler implicit scheme is used for time discretization, Eq. (2.1) can be written in the

following form of the augmented Newton’s method (Fletcher, 1991):

[1 + 413.A" + 3,B" + 0.CHUQ" = — A:E" + 9,F" + 3,G") (2.3)

where the Jacobians A, B, Care39E/0Q, dF/3Q, 3G/aQ, respectively. The expressions for
A, B, Cand are given in Appendix A. In upwind formulations, these fluxes are split to match
the direction of the physical propagation of the solutions. Based on the direction of the
characteristics at each grid point, the fluxes are split into their forward and backward

contributions. Denoting the forward contribution with + and the backward with —, and
forward and backward difference operators with * and 0 ™, respectively, we can rewrite

Eq. (2.3) as

[1+ 4107 A + 0A7) + A5 BT + 87B™) + 4187 C* + 6, CTH|AQ 2.4

= —AtO7E*Y +07E™ + 0, F* +6,F +0;G* +96/G™) = — AR"

The left hand side of the equation is usually approximated with first-order differences, but
the right hand side uses second-order differences to improve the overall accuracy of the

converged solution. However, even with first-order difference approximations of the
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implicit terms, the equation is computationally expensive to solve. To reduce this cost, the
implicit operator is factored into a sequence of easily invertible terms. Following Anderson

et al. (1988) we will consider the following three factorizations:

[+ 4105 A* + 83 A1 + 4105 B* + 87 B7)|I + 410, C* + 6/ CTHAQ = — AR
(2.5)
[1+ 41074 +6;B% + 67 CH|[1 + 4163A™ + 8} B~ + 67 CTHQ = — AR" (2.6)

[1+ 4107 A" + 04~ + 0, CH|1 + 460, B* + 8B~ + 67 CTHUQ = — AiR" (2.7)

Equations (2.5), (2.6) and (2.7) shall be referred to as the spatial, eigenvalue and
combination factorizations, respectively. There are different ways of obtaining the split
fluxes expressed in the above equations but two popular methods viz.: Steger—-Warming
(1980) flux—vector splitting, and van Leer (1982) flux—vector splitting, are considered in this
work. In the Steger-Warming case, the fluxes are obtained from the following

transformation:

AT =X,DIx;l, AT =X, DiX;!, eic. (2.8)

where DI and D, are diagonal matrices whose elements are the positive and negative
eigenvalues of A, respectively, and the columns of X, are the eigenvectors of Jacobian A. The
terms E* and E~ are obtained from Et = ATQ, E~ = A~ Qetc. Equation (2.8) gives

approximate values for A * and A 7. The exact (true) values are obtained from (see Jespersen

and Pulliam, 1983):

At = L A- =%EQ—‘, etc . (2.9)

In order to resolve the singular nature of the Steger—-Warming flux—vector splitting at the

sonic speed, van Leer proposed the following splitting in Cartesian coordinates:
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With similar forms for F ¥, the Jacobians A*, A~ etc. are obtained from Eq. (2.9). The
analytical expressions for these can be obtained using a symbolic manipulator such as
Mathematica. In these expressions, van Leer (1982) ensured continuous differentiability of

the fluxes especially at the sonic transition and the stagnation point (Hirsh, 1990).
2.1.2 LU Approximate Factorization for the Euler Equations

This approach has become popular in recent times. It factors the implicit term of Eq. (2.3)
into two components such that each component is strictly either a lower (L) or an upper (U)

matrix as in the following equation:

1+ 41654, + 07 B, + 67 CPJI + 4103 Ay + 6B, + 8 Cl0

2.11
= — A1{0.E + 0,F + 6,G) @D

The Jacobian matrices are split to ensure diagonal dominance for each matrix inversion at
each grid point. For our numerical computation we have adopted the flux-vector splitting
devised by Jameson and Turkel (1981) viz.:

_ A+ rD A = @Aa-rd

> , A, 7 (2.12)

A,

In the above, r, = max(l4l)etc. and A, are the eigenvalues of matrix A, viz.: u+a, u—a, u, u,

u.
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The explicit terms are central differenced and it is necessary to damp the associated high
frequency waves and/or to correct the odd—even decouplings. In this study, the following
combination of second- and fourth-order explicit linear dissipations, Dj, is employed.
According to Caughey (1988), and Yokota and Caughey (1988), the former term is necessary
for any spurious waves at the vicinity of shock while the latter ensures convergence to steady

state.
DS = (1, 41450 5 — % 4AIAX0 1) Q (2.13)

Noting that 8, = (1/4x)(8; — 6, ), the second—order term is split in a manner consistent
with the differencing of the Jacobians and is implemented implicitly as often done in
practice. Thus, with similar terms in the y and z directions, and their addition to Eq. (2.11) as

diagonal matrix coefficients, we can write

1+ 41657 Ay + 87 B, + 07 C)) + %4107 + 85 + 7))

X [I + A16F Ay + 8By + 87 Cy) — 24107 + 05 + d;)]AQ (2.14)
= ~ Al8,E + 0,F + 6,G) — xyAAX*0 ceex + AYByyyy + A2%0:222)0

This factorization is similar to the eigenvalue factorization (see Eq. (2.6)) except that the
explicit terms are centrally differenced rather than upwinded, thus, requiring the addition of
dissipation. Also, the split fluxes of Jameson and Turkel which are less difficult to derive are
used to achieve diagonal dominance in this case. x, and x4 are second— and fourth—order
coefficients of dissipation, and although », is implemented implicitly, it is essentially an

explicit dissipation coefficient.
2.1.3 ADI Factorizations for Euler and Navier-Stokes Equations

The 3-D Navier—Stokes equations in Cartesian coordinates can be written as
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where E, F, G are as defined earlier, and E, F, G, are the viscous fluxes given by

E, = I:O» %,u(zux - Vy — wy), ,u(uy + Vo), u(u; + wy), T
uv(uy + vy) + uw(u, + wy) + %yu(Zux —Vy — Wy + ka]

F, = [o, puluy + vy), %y(Zvy — Uy — W), u(v; + W), .
puuluy + vi) + uw(v; + wy) + %yv@vy — Uy — W) + kTy] (2.16)

G,

[0, pws + ug), uv; + wy), %#(ZWZ = Vy — Uy), .
pu(wy + ug) + uv(v, + wy) + %yw(2wZ = Vy = Uy + sz]

In Eq. (2.16), T = p/[ecu(y — 1)], and p is as defined in Appendix A. Also, Stokes
hypothesis (A = — (2/3)u) has been assumed. With E, F, G, setto zero, we recover the
Euler equations (2.1). Using the Beam and Warming (1978) scheme, the viscous fluxes are
split directionally. Following the approach presented in Anderson et al. (1984) for 2-D
Navier—Stokes equations, analysis yields the following ADI approximate factorization for
the 3-D Navier—Stokes equations. Here, Euler time integration and constant fluid properties

are assumed.

[+ 4104 — 8Pl + 46,8 — 8,91 + 41(6.C ~ 8:NAQ =
— AffAdx — ROy — RyOyx — Rpdux + Bdy — S0, — (2.17)
S84y = Sy0zy + COp = Y10y — Ypby, — Y810

The analytical expression for the various Jacobians (from the viscous fluxes) that appear in
this equation are shown in Appendix B. The right-hand side resulted from linearization and

from assuming the flux Jacobians to be locally constant. To damp the high—frequency waves
that will arise due to central differencing, second—order implicit (Di = — g At4xd,,) and

fourth—order explicit (D = — € AtAx30 ) artificial dissipations are added as diagonal
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matrix coefficients in the numerical examples. Thus, with similar dissipations added in the y

and z directions Eq. (2.17) becomes

[1+ 4106,A — 0R — e Ax0)|[I + AKB,B — 8,8 — £48,y)]
X [I+ 410,C - 6,Y — e420)40
= — AffAdy = ROz ~ RyOyx — ROy + BOy — §18y, — S8y, = 5,0,y
T+ 0O, = Vi0p — Yoby, — Yoy + £AX%0riex + AY*0yy + A2%02)|0

(2.18)

The corresponding factorization for the Euler equations becomes transparent if the viscous
flux Jacobians R, R;, R,, S, §;, S, Y, Y}, Y, are set to zero. ¢; and &, are second-
and fourth—order coefficients of dissipation just as », and %, except that ¢; is an implicit

dissipation coefficient.

In the forgone analyses, different approximate factorizations that are widely used in practice
have been formulated for the 3-D Euler and Navier-Stokes equations. The convergence
characteristics of each of these are examined using the von—Neumann type Fourier analysis

methods.
2.1.4 von-Neumann Stability Analysis

Each of Egs. (2.5)—(2.7), (2.14) and (2.18) can be expressed as

NAQ® = — L = — AR” (2.19)

von-Neumann stability analysis is used on this system of linear Eq. (2.19) by letting the step

by step solution be characterized by

0" =U Olnelie,eljeyelkﬂz (2.20)
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where A is the amplification factor and {6, 8,,6,} represent the modes in the x—, y— and

z—directions. Thus, Eq. (2.19) reduces to a complex generalized eigenvalue problem of the

form (Andersen et al., 1988):
A A A A A
Kx = ANx where K=N-1L 2.21D)

The Fourier symbols are derived for each of the factorizations shown in Egs. (2.5)—(2.7),
(2.14) and (2.18). For example, for the Euler Equations based on the Beam—Warming

scheme (from Eq. (2.18), these two Fourier symbols are expressed as follows:

POl = Atz i29x At pre 20y ]
N@HY = |1+ Ix Alsin(0,) + 4¢;sin > I+ 2y BIsin(f,) + 4¢;sin >

: (2.22)
At . .20,
X[l +AZ(CIsm(62) + 4¢;sin 2)
2@ = 4L1{Asin@,) + Bsin®,) + Csin(0y) +
16At£e . 4& . 4& . 4&
— (sm 5+ sint = + sin* > (2.23)

In the preceding equations, ©' = {6,,6,,8,}. The Fourier symbols corresponding to the

other approximate factorizations are documented in Demuren and Ibraheem (1992).

2.2 Solution Procedure

The convergence characteristics for solution algorithms based on each of the factorizations
discussed are investigated by solving the generalized eigenvalue problem (2.21) over a fixed
number of Fourier modes. Sixteen modes are selected, in the range — /2 < O <nx /2,
and over these modes the maximum eigenvalue ( A yax), the average eigenvalue (4 4y¢) and the
smoothing factor (4,) are computed. The smoothing factor is computed to show the

effectiveness of the selected scheme as a relaxation operator in a multigrid implementation.
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This is calculated from A, = max(Wll) for the high frequency modes in the range

x/4 < I©'l < m/2. For the analyses, uniform flow is assumed with M = 0. 8,zeroyaw
and angle of attack and y = 1. 4. Further, the grid spacing is assumed to be uniform in all

directions. The time step and Reynolds number are calculated from:

ar= = (2.24)
lul v Iwl 1 1 1 .
{z";’fzﬁzﬁc F+E§+E]

Wi [Ax2 + Ay? + Az?
Re = (fax & ?) (2.25)

As a further test case, the quasi—one—dimensiona.l Euler equations are solved with a similar
formulation as the 3-D upwind spatial factorization, with uniform conditions of
M. = 0.5, zeroyawand angle of attackand o = 1.0, chosento enable comparison with
Jespersen and Pulliam’s results (1983). In this case, the computed parameters are the
maximum eigenvalue (Amax), the L2-norm of the eigenvalue (/,) and the eigenvalue at

0, = m, (Ag). Abatchfile used to submit a typical 3-D test case is shown in Appendix D.

2.3 Results and Discussion

Computed values of the maximum eigenvalue (A max), the average eigenvalue (Aavg) and the
smoothing factor (4,) for the spatial, eigenvalue and combination factorizations based on the
Steger and Warming flux-vector splitting are shown in Figs. 2.1(a), 2.1(b) and 2.1(c),
respectively. Both the eigenvalue and the combination factorizations are unconditionally
stable for all CFL numbers. The spatial factorization is stable only for CFL numbers below
five. The maximum eigenvalue for each of the spatial, eigenvalue and combination
factorizations is minimized at CFL numbers of three, eight and seven, respectively.
Corresponding results obtained for 2-D case (not shown) indicate that the spatial and

eigenvalue factorizations are unconditionally stable and have lower Amax than the 3-D case,
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for all CFL numbers. The corresponding minimum value of are minimized at a CFL
numbers of eight and ten, respectively. The 1-D case is also stable for all CFL numbers with
the maximum eigenvalue minimized at a CFL number of 11, for both spatial and eigenvalue

factorizations (Table 2.1).

Figures 2.1(d—f) show the convergence characteristics of each of the factorizations based on
the van Leer flux—vector splitting. These agree very well with that of Anderson et al. (1988).
Except for the spatial factorization, all the schemes are unconditionally stable for all CFL
numbers. The spatial factorization is stable only for CFL number below 14. The maximum
eigenvalues for the spatial, eigenvalue and combination factorizations are minimized at CFL
numbers of seven, four and seven, respectively. From the 4, curve, it appears that the spatial
factorization with the Steger and Warming method has poorer smoothing properties
compared with the van Leer spatial factorization. Based on linear analysis, there is also a
smaller range of CFL numbers over which it is stable. The spatial factorization and the
eigenvalue factorization of the 2-D case are found to be unconditionally stable with
maximum eigenvalue minimized at CFL numbers of about nine and six, respectively. Results
for the 1-D case are almost identical to those of the Steger and Warming analysis, with

maximum eigenvalues minimized at CFL numbers of 11 and 19, respectively.

In the computations presented thus far, approximate Jacobians derived from a time
linearization of the Euler equations have been employed in the Steger and Warming method
on both the implicit and explicit sides. The effect of using the exact Jacobians in the stability
analysis was investigated with the 1-D Euler equations using uniform conditions of
M, =0.5 and ¢ = 1.0. The results are compared in Figs. 2.2(a) and 2.2(b),
respectively. In both cases, first-order differencing was used on the implicit side (lhs) and
second-order differencing on the explicit side (rhs), as in previous computations. From these
figures, it can be observed that the results (as reflected by the variation of Apayx, Iy, 4 With

CFL) are similar. This shows that the use of an approximate Jacobians does not place a
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restriction on the stability. This is at variance with the conclusion of Jespersen and Pulliam
(1983). Restriction on the stability will result if the Jacobians are “mixed” such that
approximate Jacobians are used on the implicit side and the exact Jacobians on the explicit
side. In this case, Fig. 2.2(c) shows that the stability is restricted to CFL numbers below
unity. On the other hand, if the Jacobians are mixed in the reverse order (i.e., with exact
Jacobians on the implicit side and approximate Jacobians on the explicit side), the results (see
Fig. 2.2(d)) are not significantly affected. Further, from Figs. 2.3(a—d), where we have used

second—order differencing on both sides, similar conclusions can be drawn.

All computations have been based on uniform flow conditions. To ascertain the suitability of
using such uniform flow field assumptions in the stability analysis, computations were
carried out on two non—uniform flow fields with the quasi—1-D Euler equations using local
mode analysis. These correspond to supersonic and transonic flows in a diverging duct with
steady—state solutions, shown in Figs. 2.4(a) and 2.4(b), respectively. The von-~Neumann
method is applied at each point in the flow field thereby accounting for the variation in flow
properties. The stability results for the supersonic and transonic cases with first-order
differencing on the implicit side and second-order differencing on the explicit side are
shown in Figs. 2.4(c) and 2.4(d), respectively. These results follow a similar trend as those
obtained for the 1-D Euler equations with uniform flow properties, except that instability is
now predicted for lower CFL numbers. Boundary conditions were implemented explicitly
and might have contributed to this instability. The use of local mode analysis here, is similar
to the use of the total matrix method approach of Jespersen and Pulliam (1983), except that
the former is easier to compute because it involves the solution of only a 3 X 3 eigenvalue

problem.

Figures 2.5(a—) show the convergence characteristics of the 3—D Euler equations using the
LU approximate factorization with central difference approximations and various levels of

second— and fourth—-order artificial viscosities, x,and »,. Without the addition of
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second-order dissipation (i.e.,x, = 0), thecoefficientx, = 0. 4 yields the optimal results
(see Fig. 2.5(a)). Appropriate combinations of x,and x, (especially when %, = %)
considerably reduce the amplification factor (see Fig. 2.5(b) as compared with Fig. 2.5(c)).

The amplification factor is minimized in each case at a CFL of about five. Similar trends

were observed in 1-D and 2-D cases.

In Figs. 2.6(a—f), the convergence characteristics for the full 3-D Naiver—Stokes equations
using the Beam and Warming (ADI) central difference scheme as the baseline solution
algorithm are shown for different Reynolds numbers and levels of artificial dissipation. For
the Reynolds number of 100 (Fig. 2.6(a)) and with no dissipation added, the scheme is stable
for CFL number below 18. However, with artificial dissipation coefficients of ¢, = 0.5
and ¢; = 1. 0 (Fig. 2.6(b)), the stability is restricted to a lower CFL number of 10, but with
better smoothing properties. Optimal dissipation coefficientsof ¢; = 1.0and¢; = 2.0
(Fig. 2.6(c)), are found to improve the stability to a CFL of about 18 while maintaining good
smoothing properties. The maximum eigenvalue is minimized at a CFL number of about
four for this optimal dissipation. Both 1-D and 2-D cases are unconditionally stable for all
levels of dissipation. For ¢; = 1.0 and ¢; = 2. 0, their maximum eigenvalues are both
minimized at about CFL numbers of 24 and 11, respectively. The results are mostly similar at
the higher Reynolds number, except for the case without artificial dissipation. Hence, the
stability results are not significantly affected by Reynolds number. The stability results for
the 3-D Euler equations with the Beam and Warming (ADI) central difference scheme are

similar to those obtained for the full Navier—Stokes equations at the Reynolds number of

10%. Generally, the addition of dissipation reduces the amplification factor and the
smoothing factor at lower CFL numbers. Optimal smoothing is usually at a CFL number

close to unity.
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The above results are summarized in Table 2.1. In the Table, A,, stands for the minimum

amplification factor, CFL,, for the corresponding CFL number, CFL, the maximum CFL

number for stability and CFL,, is the CFL number at which 4, is minimized.
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Fig. 2.1: 3-D Euler Equations using upwind schemes
(a)—(f) Convergence Characteristics
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Fig. 2.2: 1-D Euler Equations using Steger—Warming schemes, first—
order lhs, second—order rhs. (a)—(d) Convergence Characteristics.
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Fig. 2.3: 1-D Euler Equations using Steger—Warming schemes,
second—order both sides. (a)—(d) Convergence Characteristics.
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Fig. 2.4: Local mode analysis of Quasi—1-D Euler Equations M,,=1.5

(a)—(b) Pressure solutions (c)—(d) Convergence Characteristics.
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2.4 Concluding Remarks

The stability of some approximate factorization schemes for the solution of the 3—D Euler
equations and Navier-Stokes equations have been studied. For the Euler equations, the
Steger and Warming, and van Leer flux—vector splittings were used with three different
upwind factorizations namely: spatial, eigenvalue and combination factorizations. For both
flux—vector splittings, the eigenvalue and combination factorizations are unconditionally
stable, but the spatial factorization is only conditionally stable for CFL numbers below five
for the Steger and Warming scheme, and 14 for the van Leer scheme. Moreover, the
amplification factor (Amax) is minimized for the Steger and Warming scheme at CFL
numbers of three, seven, and eight respectively, and for the van Leer scheme at seven, four,
and seven, for spatial, eigenvalue and combination factorizations, respectively. Each of the
approximate factorization methods has good smoothing properties for the van Leer
flux—vector splitting, while for the Steger and Warming splitting, the smoothing factors are
comparatively worse. Therefore, the van Leer splitting will be preferable for multigrid
implementation. The Euler equations have also been analyzed for stability using the LU
approximate factorization with central differences and various levels of artificial dissipation.
It was found to be unconditionally stable in all dimensions with the maximum eigenvalue
minimized at a CFL number of about three. Contrary to the conclusion drawn by Jespersen
and Pulliam (1983) that the use of approximate Jacobians places restriction on the stability, it
is shown, after careful investigation, that if they are used on both the implicit and the explicit
sides, the stability results are comparable to the case where the exact Jacobians are used. The
von—-Neumann analysis method was also employed in performing local mode analysis for
actual (supersonic and transonic) flow fields of a quasi 1-D problem to show the suitability
of using uniform flow field in the stability analysis. Stability results for the 3-D Euler and
Navier-Stokes equations solved with the Beam and Warming (ADI) central scheme with

various levels of artificial dissipation (and at different Reynolds number for the latter) have
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been presented. It was observed that the stability is not significantly affected by Reynolds
numbers and that addition of dissipation reduces the amplification factor and the smoothing

factor at lower CFL numbers.
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Chapter 3
BI-GRID STABILITY ANALYSIS

The objective of this chapter is to present a procedure for utilizing the bi—grid amplification
factor as a more effective tool for predicting practical multigrid performance in a range of
numerical methods. Bi—grid analysis, based on the von—-Neumann type method, is first
presented for the 1-D convection and diffusion model problems, and the linearized Burger’s
equation. Numerical results from practical multigrid solution of these problems are
compared to both predictions from bi-grid analysis and smoothing factors derived from the
more usual single grid analysis. Both analyses and practical computations are based on the
following different time-stepping methods: the Euler forward explicit scheme, the
Runge-Kuttamultistage scheme, a fully implicit scheme, and the semi—implicit scheme. The
influence of the Peclet number on the convergence characteristics of the different schemes is
investigated using the Burger’s equation. Finally, for more practical situations, multigrid
performance of various approximate factorizations for the 3-D Euler and Navier-Stokes
equations are examined using the bi~grid stability analysis. For the Euler equations, bi—grid
analysis is presented for three upwind difference—based factorizations and several central
difference—based factorizations. In the upwind factorizations, both the flux—vector splitting
methods of Steger-Warming and van Leer are considered. The central-differenced schemes
include the Lower and Upper (LU) and ADI factorizations. The time—stepping algorithm for
the Navier—Stokes equations is based on the Beam—Warming central difference scheme only.

Finally, effects of grid aspect ratio and flow skewness are examined.
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3.1 Bi—grid Analysis

Consider a given differential problem which can be written as

L{u(x)} = f(x) , for x in (3.1)
where L is a linear operator. A typical 2-level multigrid cycle solution to this problem will
involve the following steps:

(1) pre—relaxation on a fine grid using any technique S, v! times
(2) computation of the defect R

(3) restriction of the defect to the coarser grid

(4) exact solution of the error equation on the coarse grid

(5) prolongation of the error onto and the correction on the fine grid

(6) post-relaxation on the fine grid using any technique S; v2 times

These can be represented for any intermediate solution w, by using the usual operators as

follows:

(1) wn+% — S1i;lwn
(2) R =f— Lw"*:

(3) IR

3.2
(4) vy =Lz'dfR (3-2)
(5) vy +w'ts
(6) wttl = S;Z(I?{VH + w"+12)
Combining these steps, we can write
witl = SYILE G — L,SY W™ + SY'w (3.3)

The steady—state solution (u) is not changed by the coarse grid correction scheme; thus
Wt = SYURLE U — LS u) + ST (3.4)

n+l _ un+1

Subtracting (2) from (1) and noting that e — w1 gives
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"t = S - IpLy ' ILyST " (3.5)

— S12,2 KS11,len
= Me"
where K=1-1L51L,
M = S50 - InLy 'IiLy)ST (3.6)

M is the bi—grid amplification matrix and K is the coarse grid correction matrix. It can be
shown (Stuben and Trottenberg, 1982) that when linear operators are used for the restriction,
IhH, and the prolongation, 1%, transfer processes, the coarse grid correction matrix is not a

convergent iteration matrix. i.e.,
oK) = o1 — ILLE L) = 1 3.7)
Hence, the fine grid smoothing steps S;, and S; are important for a convergent scheme. The

spectral radius of the bi—grid amplification matrix (A ) and its l2 norm can be used to

max_bg
predict the performance of a multigrid method. While the spectral radius measures the

asymptotic convergence rate of the multigrid method, the /, norm measures the actual error

reduction per iteration. 4 is defined as follows:

max_bg

Armar_bg = max{o[M(©)]} (3.8)

Aj\l(@) is the Fourier representation of the matrix M. A brief comment about © will be in
order. Due to the aliasing process, low—frequency modes will couple with the coarse grid
Fourier modes and, thus, for any ©' = {0,,6,,6,} such that — n/2 < 6,, 6,6, < /2,
there exists a corresponding set of harmonics up to an integer multiple of 2. For 1-D, 2-D

and 3-D problems, we define © as the following set :
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{(02),(0x £ 7))}
{(6:,6,). (66, % ), (6 £ 7,0,),(6x £ 7.6, £ x)} 3.9)

(S
2-D C)
®

((61,6,.6.).(6x.6,.0; £ 7).(6:,6, + 7,6,),(6,,0, £ 7,6, + x),
(0x £ 7,0,,0,), (6« + 7,0,.6, + ), (6, = 7,0, £ 7,6,),
(Gx + 7,0, £7,60, £ zt)]

Or more generally,

d-D e = [@1,@2,@3, .,@”] (3.10)

(where d is the dimensionality of the space, and @1,072, ... . @ are permuted in a similar
manner with the 4 signs chosen such that the harmonics lie in the high—frequency range).

Hence, based on the ® components and on the number of degrees of freedom of the problem,

q, M (@®)isa 2% x 2% matrix. Thus, it is a 2x2 matrix for a 1-D scalar problem and 40x40
matrix for the Euler or Navier—Stokes equations in 3-D. The Fourier representation for the
corresponding operators viz.: smoothing factor, fine grid problem, interpolation, restriction

and the coarse grid problem can be constructed as follows (Brandt, 1991):

3 = (3"’2 ﬁ‘l") = dlag[ ( ) ( 2) ( )] 245 X 2%
= dzag[l/\,(@l) ( ) ..... ( d}] 25 X 2%
= [1(07). 1(67).... ?H(de] 2% X q (.11
IH - [yy( ), We2), ... (e ] a
)

q X 2%
Ly = L[20" 7X4q

The difference operator, 2,.,(2@1), on the coarse grid is only gqxq since the coarse grid

problem is solved exactly.

Sand 1 depend on the choice of the smoother and the governing equations, respectively. The
transfer processes, however, are less problem—dependent. Following Brandt (1991), the

Fourier symbol of the prolongation operator based on an I*”-order polynomial is given by
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d
1™y = 0y [ {91 cos®P) m=1,24 (3.12)
i=1

where ¥,(&) = (1 + £)/2, y,(6) = 2 + 3§ - £%)/4, etc. are the 2nd and 4th order

interpolation functions, and d,, is the Kronecker delta. We restricted our analysis to the 2nd
order case, since it is more commonly used. The restriction operator is expressed as

2415 @Om) = (e (3.13)
T * inthe above equation represents the conjugate transpose. The restriction operator is often
the adjoint of the prolongation operator in practice. In this study, the corresponding full
weighting is used for the restriction operation for the Euler and Navier-Stokes equations,

while simple injection is employed for the model problems. In the latter case, the Fourier

symbol for the restriction operator is simply unity. A description of how the Fourier

. A 13 . .
representation M(®) can be constructed is given later for certain problems.

3.2 Model Equations

The model equations used in the present study are the conservation equations for the
convection of a scalar, the diffusion of a scalar, and the linearized Burger’s equation which is
essentially a convection—diffusion equation. Each of these equations is integrated in time
using (1) the Euler forward—explicit scheme, (ii) a Runge—Kutta multistage scheme, (iii) a

fully implicit scheme and (iv) a semi—-implicit scheme.

The model equations for convection, diffusion, and the linear Burger’s equation can be

expressed as:

convection: u, + cuy =0
diffusion: Uy — vy = 0 (3.14)
(convection—diffusion) Burger’s: U; + Uy = Vilry
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In the Burger’s equation, u, = constant is assumed in our analysis. Thus, it can be put in

the following non—-dimensional form:

U+ uy = ﬁlguxx (3.15)

where Pe in the above equation is the Peclet number defined as follows:

u,D

Pe = = (3.16)

(D is an appropriate length scale)
(i) Euler forward—explicit scheme
The Euler explicit method can be applied to the above equations to yield the following

general discrete form:

W =t — AR (3.17)

]

where R™ represents the residual expressed as follows:

convection: R" = Aix(uf‘ —ul_y)

diffusion: R"= - Z’“—z(u;'+1 —2u? + ut) (3.18)
X .

Burger's:s  R" = S-(uf — W) = gy = 2+ ul)

Spatial discretization in the above formulations is based on first-order upwind differences
for convection, second—order central differences for diffusion, and the corresponding
combination in the Burger’s equation. First-order upwind differencing of the convective
flux introduces inaccuracy due to too much numerical diffusion which may be of the same
order of the natural diffusion in the Burger’s equation. If second—order central differencing is
used for the convective flux, a second—order accurate scheme can be obtained, but with
severe limitations on the Peclet number due to dispersion errors. Although the addition of
artificial viscosity could dampen the high—frequency oscillations athigh Peclet numbers, itis

highly problem dependent. A better approach to achieve a second—order accuracy while
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sustaining a smooth solution at the vicinity of a shock or high gradients is to discretize the
convective flux using higher—order upwind schemes, preferably in conjunction with some
type of flux limiter. Hence, with a third—order discretization of the convective flux, a

second—order accurate scheme for the Burger’s equation can be obtained with R" given by

R" = () = W) — ol = 307 + 347, — )

1
Ax2Pe

(3.19)

n n n
Wiy = 2u] + ui_y)

(ii) Runge—Kutta Multistage scheme

With each of the above schemes integrated in time using the Euler forward explicit method,
the time step was limited to a small range by stability considerations, thus making it
inefficient for steady—state computations. A Runge-Kutta (RK) method was introduced by
Jameson et. al. (1981) to permit larger time steps to be taken. For an m—stage scheme, the

time integration can be written as follows:

uj = uf
ub = uf — a AR+ k=1.m (3.20)
uptt = up

Note that with m = 1, the RK scheme reduces to the Euler forward explicit scheme and

hence is sometime called RK1. Coefficients @, are optimized such that larger time steps can
be used for faster convergence.

Three different sets of coefficients for a 4—stage Runge—Kutta scheme are investigated in this
study, in line with the earlier work of Morano (1992). These are the standard coefficients
(RK4-S, a, =.25,a, =.3333,a; =.5,a, = 1), and the optimized coefficients of
Lallemand (RK4-L, a;, =. 11,a, =.2766,a; =. 5,a, = 1) and van Leer (RK4-VL,
a; =.0833,a, =.2069, a; =.4265,a, = 1).
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(iii) Implicit scheme

An implicit time integration scheme in delta form can easily be formulated for each of our
model problems. For example, the corresponding implicit formulation for the Burger’s

equation with first—order accuracy is written as follows:

At At At 24t
— Bl + A A+ 1+ (4L + =4 aur
[ ﬂ(Ax Pesz)] Hi- [ ﬁ(Ax Pesz)]Au'

- ﬂ(#)@gl = — AR (3.21)
_ 1 1
R" = o (uf = ) = (e — 20f + ufy)
Au’ =yt —

The quantity § in the preceding formulation is called the implicitness factor. 8 = 1. 0 gives

a fully implicit scheme.
(iv) Semi—implicit scheme

If 8 = 0.5 inequation (3.21) above we have a semi—implicit scheme. This reduces to the

Crank—Nicolson scheme if the overall spatial differencing is second—order accurate.

3.2.1 Fourier Symbols

. - . . v - . A . .
For illustration, the bi—grid amplification matrix M(®) is constructed for the convection

problem using the Euler—forward explicit scheme for the relaxation.

Consider the discrete form of the operator L and let the step—by-step solution be

characterized by Fourier modes (with periodic boundary conditions) as

u" = Uolne(),li (3.22)

Then each of the operators that forms the matrix A?(@) becomes:
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S = (1 - %) + %[cos(@'") — Isin(@™)]

Lyem = - J-11 — cos@™) + Isin@™)]

11e™ = 211 + cos(@™) m=12
?hH(@’") =1 for injection (3.23)
1, = - —1——[1 ~ c0s(20') + Isin(20")|
H 24x
where Pl=0, and O*=0,+n=x

Thus, from Eq. (3.8), A?(@) can be expressed as:

. sy o] [k, k., 1[ste) 0]
M(©) = A A
0 S| |k, k,|lo 5©»

Ky = 1 - 1{0fe"e")/L,

Ka = — Bo"eL03/L, G249
Ky = - Deke"L0)/L,

Ky = 1 - I{ONNOL(0Y/L,

Note that L g 1s evaluated only at the fundamental frequency {26,, 20, 26,}, hence itis 1x1.

The result obtained above is similar to that derived by Morano (1992), although our

presentation is more general and is more easily extended to multi-dimensions.

3.2.2 Multigrid Implementation

A simple two-level multigrid (V cycle) method was implemented to test the relative
accuracy of the bi—grid amplification factor and the smoothing factor in predicting multigrid
performance. The two—level algorithm consists of the steps given in Sec. 2 and is recursively

expressible as follows:



Proc Multigrid (™, u"*',R" k)
{if k=1

either w1l = LI;IR"

or urtl = goyn

else T e gl (3.25)

R™ < IH(R™ — Lu™)

Multigrid (O,ug, R", k — 1)

un+1 -« un+1 + I}IquH
endif }

In the Eq. (3.25), L and S stand for the discrete operator and relaxation scheme
corresponding to each of the model equations and numerical schemes discussed in previous
sections. For this two-level V cycle multigrid implementation, the exact solution of the
residual equation is employed. Only one pre—relaxation with no post-relaxation is

performed on the fine grid.

3.2.3 Local Relaxation

Bi-grid analysis is exact for problems with periodic boundary conditions since it is based on
the Fourier method. However, the asymptotic convergence rate for certain multigrid
solutions deteriorates from the bi—grid prediction due to singularities such as a discontinuity
in the material and /or solutions, and also due to the type and coefficients of the boundary
conditions. Poor multigrid performance results since such singularities lead to too large a
correction from the coarse grids in the localized region. To improve the performance of a
multigrid solution, further relaxation can be performed on the fine grid in the region of the
singularities after applying the coarse grid correction. This local relaxation is, in fact, an
extra post-relaxation, but is confined to only certain nodal points and is carried out only a
few number of times. The extra computational work is negligible if only a few partial sweeps
is involved. The convection dominated problems subject to Dirichlet boundary conditions
that are considered here undergo high changes in the gradients in order to satisfy the exit
boundary conditions. Therefore, multigrid performance in these problems deviates from the

results predicted by the bi-grid analysis. However, a few passes on the fine grid over the
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boundary conditions and over the interior equation in some small neighborhood of the
boundary (about three nodal points at the exit) is found sufficient to improve multigrid

performance to the exact value predicted by bi—grid analysis.

3.2.4 Numerical Experiments

The bi-grid amplification factor ( A ), the smoothing factor ( /l/,_sg ) and the practical

max_bg
asymptotic convergence rate ( Qmg ) of the multigrid scheme were obtained for the

following test problems:
(1) The convection problem with periodic boundary conditions, viz.:
u(0,9 = u(l,1) . u(x0) = sin2mx (3.26)
(2) The convection problem with Dirichlet boundary conditions, viz.:

w(0,1) = 1 , wW(l,) =0  forr>0 ;  u(x0) = sin2rx 327

(3) The diffusion problem with similar Dirichlet boundary conditions as in (2) above
(4) The Burger’s equation with similar Dirichlet boundary conditions as in (2) above.
The bi—grid amplification factor is obtained from Eq. (3.8) and the smoothing factor is

obtained from the usual single grid amplification factor over the high frequency range

2 <@ =mas Ayg = max[Q[TS'(@‘)] } . In each case, sixteen Fourier modes are
selected, and the associated eigenvalues are solved for using linear algebra routines such as
found in the IMSL library. The asymptotic convergence rate of the multigrid experiments, on

the other hand, is computed from

1

(IR
ng - (“ Rnl ” (328)

where|| R™! || and || R"|| are the [, norm of the residuals at time levels nl and n2,

respectively.
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The pseudotime At to advance the convection and the diffusion problems to steady state is

computed from CFL = 4 and d = At

Ax PeAx?

respectively. The CFL number is the

Courant-Friedrichs-Lewy number, and d is the diffusion number. For the Burger’s equation,

At is computed from:

At = min(odx , 0dx%Pe) (3.29)

where ¢ is an appropriate parameter chosen to reduce to the diffusion number d at low Pe

numbers and to reduced to the CFL number at high Pe numbers. This choice ensures that the

appropriate time step is used in each flow regime. Ax is computed from D/20. Preliminary
tests showed that the same results are obtained with 40 or 80 points.

The exact steady—state solution for the Burger’s equation, subject to the boundary condition
type discussed above, is given by

1 — explPe (£ - 1)]
1 — exp(— Pe) (3.30)

u = u(0,1

It is valid for all range of Pe considered in this study.

3.2.5 Results for the Model Equations

Figures 3.1 and 3.2 show results of the analyses of the 1-D convection equation using the
Euler forward explicit scheme. The model problem of Fig. 3.1 has periodic boundary
conditions, whereas that of Fig. 3.2 has Dirichlet boundary conditions. The bi—grid analysis
gives perfect prediction of practical multigrid performance in the former, whereas the
smoothing factors from the single grid analysis are much too high. Both methods of analysis
ignore boundary effects, so the same predictions are obtained in Figs. 3.1 and 3.2, and the
analyses predictions are strictly correct only for problems with periodic boundary
conditions. This is confirmed in Fig. 3.2(b) where the asymptotic multigrid convergence rate
is now much worse than predicted by the bi-grid analysis. The reason for the degradation of

the multigrid performance is the singularity which appears near the exit in Fig. 3.2(a). This
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degradation in performance could be cured with a few local relaxation sweeps (Brandt and
Yavneh, 1993), as shown in Fig. 3.2(c). Each sweep had marginal computational cost and
five sweeps were sufficient to bring the multigrid performance for the Dirichlet problem in
line with that with periodic boundary conditions and the prediction of the bi—grid analysis.
Clearly the Euler forward explicit scheme does not have good convergence properties except
for CFL numbers close to 0.5, and it is divergent for CFL numbers greater than 1. Better
convergence properties are achieved with Runge-Kutta (RK) schemes. Three 4-stage RK
schemes were analyzed, and the results are shown in Fig. 3.3 for the 1-D convection problem
with periodic boundary conditions. With optimized coefficients Fig. 3.3(c), convergence
could be obtained for CFL numbers up to three. Further, bi—grid amplification factors below
0.4 are obtained for the range of CFL numbers from 0.5 to 2.5. There is also perfect
agreement between the results of the bi—grid analysis and the practical multigrid
convergence rates. Similar multigrid results were obtained by Morano (1992). Figure 3.4
shows the result for the Dirichlet boundary conditions. In this case the multigrid convergence
rates at higher CFL numbers are much better than predicted by either method. Clearly, the
boundary effects are stronger with the RK scheme and there is no simple way to account for
them in the analyses. Figure 3.5 shows results for a fully implicit scheme and for the
semi-implicit Crank—Nicolson scheme, for the 1-D convection equation. Although both
schemes are stable for the whole range of CFL numbers, the Crank—-Nicolson scheme suffers

from very poor convergence rate at high CFL numbers.

Results for the 1-D diffusion equation are presented in Figs. 3.6-3.8. Dirichlet boundary
conditions are applied throughout, and the steady state—solution is shown in Fig. 3.6(a). In
each case, the bi-grid analysis gives perfect agreement with the multigrid convergence rate
whereas the smoothing rate obtained from the single grid analysis is consistently too
optimistic. On the whole, the predicted convergence rates for each method are similar to the
corresponding one obtained from the convection equation, if the diffusion number, 4, is

replaced by the CFL number in the latter. Clearly, if the goal is to achieve rapid convergence
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to the steady state, the fully implicit scheme with high d or CFL number is the obvious

choice.

The linearized Burger’s equation represents a mixed convection—diffusion problem. The
whole range of model type, from pure diffusion to pure convection, can be obtained simply
by varying the Peclet number from a very small value to a very large value. Computed results
for four values of Pe (1074, 20, 100, 10%) are presented in Figs. 3.9-3.12, for the various
discretization schemes considered here. The exact solution at the steady state is shown in Fig.
3.9(a), for the Dirichlet boundary conditions u(0,t) = 1, u(1,t) = 0. For high values of Pe, there
is a singularity near x=1. As explained previously in Sec. 3.2.3 local relaxation is performed
to reduce the adverse effect of this singularity on the overall multigrid convergence rate. The
results for the first— and second—order Euler time explicit schemes are presented in Figs. 3.9
and 3.10. In each case the bi-grid analysis gives quite good prediction of the multigrid
convergence rate. On the other hand, single—grid analysis gives too optimistic estimates at
low Pe and too pessimistic estimates at high Pe. The second—order scheme shows much
poorer convergence rates, especially at high Pe. The results for the fully-implicit and

semi-implicit schemes are presented in Figs. 3.11 and 3.12. The superiority of the
fully—implicit scheme is confirmed, especially for high Pe flows. For 0 (or CFL number)

greater than ten, it is close to a direct solver with 4 — 0. In these cases too, the bi-grid
analysis agrees quite well with the practical multigrid convergence rate, except
near 0 = 1 in the semi-implicit scheme at high Pe. Because of the limited range of o
where the convergence rate is much less that unity, the semi-implicit Crank-Nicolson
scheme is not a viable method for obtaining steady solutions for the model problem. If the

main interest is rapid convergence to steady state, then the fully-implicit scheme at high

values of o (or CFL number) will be optimum.
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3.3 Euler and Navier-Stokes Equations

Presently bi—grid stability analysis has been presented for typical explicit and implicit
solution methods for model problems which range from the diffusion equation to the
convection equation and including the convection—diffusion equation at different Peclet
numbers. For large scale practical computations, interest is really in solving the system of
Euler or Navier—Stokes equations. In the following sections, the bi—grid stability analysis of
fully—implicit schemes for the Euler and Navier-Stokes equations are examined under

various approximate factorization methods.

As formulated previously in Chap. 2, the coupled Euler and Navier-Stokes equations based

on the different time—-stepping approximate factorizations are

(1 + 4105 A* + 05 A1 + Ay B + 6 B7)|1 + 416, C* + 6 CTHAQ = — AR"
(3.31)
(1 + 46874 + 67B* + 87 CH|[I + 41674~ + /B~ + 87 CTHUQ = — AR*(3.32)

[1+ 4107 A% + 6747 + 67 CH|I + 4607 BY + 8B~ + 6 CTAQ = — 41R"(3.33)
where R"=08,E* +0JE- +0,F" +6/F +0;,G* +0,G~ (3.34)

[+ 4105 A; + 07 By + 07C)) + %4105 + 85 +67)]

X 1+ 463} Ay + 65 By + 67 C)) — w416} + 85 + sHlo (3.35)

= — AU0:E + OyF + 8:G) — 2, Al{Ax S e + AY*8yyy + A2%0:22)0

[1+ A10,A — 6xR — eAd)|[1 + A1OB — 6,,S — £4yd,)]
X [I + 416,C — 8,Y — e Az20)|AQ
= — Af|Ad; — Rdu — Ridyx — Rybex + BOy — S185y = Sby, —~ S304y
H 0, — Y0 — Yy — Yoz + £(AX %0 xuux + AYDyyyy + A2%0222)|0

(3.36)
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Equations (3.31),(3.32) and (3.33) are the upwind schemes that are referred to as the spatial,
eigenvalue and combination factorizations, respectively, in Chap. 2. The flux—vector
splitting methods of Steger—Warming (1980) and van Leer (1982) are also assumed.
Equation (3.35) is the Lower and Upper (LU) approximate factorization. Here, the fluxes

devised by Jameson and Turkel (1981), viz.: A; = (A4 + |Al)/2and A, = (A — |Al)/2,are

used to achieve diagonal dominance. The operators d 7 and &~ denote forward and

backward difference operators, respectively. The terms x, and %4, and ¢; and ¢, are the

artificial dissipation coefficients for the LU decomposition and the ADI schemes,
respectively. Equation (3.36) is the Beam—Warming ADI scheme for the Navier—Stokes
equations, which degenerate to the Euler equations when the viscous flux Jacobians

R. R|, R,, §. §,. 8,. Y, Y|, Y,areset to zero.
3.3.1 Fourier Symbols
The bi-grid amplification matrix 1\/’}(@) is constructed from M = Sf(l — I’;{L,} 1Iﬁ’Lh).S"l’l.

For ease of presentation, the Euler equations alone are selected for illustration, with the ADI

central scheme used as the smoother. In this case, viscous fluxes R, R;, R,, S, §;, S,,

. A
Y, Y,, Y, are set to zero. The components operators of matrix M(®) are expressed as

follows:

(i) The fine/coarse grid Operator s

The Euler equivalent form of Eq. (2.15) is

0 (o 3G
= (ax + % L az> + dissipation (3.37)

where dissipation is added to damp oscillations. Thus, in quasi-linear form:

LQ) = (A£+BBQ+C Q) (A a2Q+A 62yQ+A a2_Q)

072
(3.38)
4 4 4
—ee(AxaQ 4369 Az3ag)
axt ay ¥4
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Holding A, B, C locally constant and employing second-order central differencing, the

Fourier symbol of the fine grid problem assuming equal mesh spacing in all directions

becomes
2,0 = - Llasin@) + Bsin@]) + Csin(©@Y)]
2¢.
+ Z%[COS(QT) + cos(@F) + cos(OF) — 3] m=1,8

L G % + sin* % + sin? % 3
Ax 2 ‘ 2 2

Note that @} represent the * element of the @™ component (see Eq. (3.9-3.11)).

For any arbitrary mode, Eq. (3.39) is a 40 X 40 matrix since each Jacobian is a 5x5 matrix and
there are 8 harmonics including the fundamental mode. The coarse grid problem is assumed
to be a version of the original problem on the fine grid and the coarse grid is formed simply by
deleting every other fine grid point. Thus, the mesh size and Fourier modes are { 24x, 201)

and its Fourier signature can be written as:

Ly 20" = - 2‘%[A sin(26.,) + Bsin(20,) + Csm(ZBZ)] [cos(26x) + cos(20))

+ cos(26,) — 3] — (sm40 + sm49 + sin*0,) (3.40)

In the above equation, only the fundamental mode, &! = {6,, 0y.6.},isemployed since the

coarse grid problem is assumed to be solved exactly. Hence, this is only a 5 X 5 matrix.

(ii) The relaxation Operator 3’

Each of the equations (3.31)-(3.33), (3.35) and (3.36) can be expressed as

NAQ" = — L = — AR (3.41)

von Neumann stability analysis is used on this system of linear equations by letting the

step-by—step solution be characterized by
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where 4 is the single grid amplification factor. Thus, Eq. (3.41) reduces to a complex
generalized eigenvalue problem of the form
A

A A A A
Kx = ANx where K=N-1L (3.43)

The Fourier symbols of Nand ’I\, for our particular example, can easily be shown to be

~ ny — & : m H 2_@_'1" é : m : 2@'2"l
N@E™ = [I + Ax(AIsm(Ql) + 4¢;sin 5 I +Ay BIsin(@7) + 4¢;sin e
L

(3.44)

X| 1+ A—Z(Clsm(@3) + 4¢;sin -5 )]
L™ = 4ALi(Asin@T) + Bsin@) + Csin(@))
Ax 1 2 3

en er en 3.45
+ —léjfe (sin“—1 + sin*=L + sin“—i) (345)

2 2 2

The Fourier symbols corresponding to the other approximate factorizations are documented

in Demuren and Ibraheem (1992). For each harmonic, @ (m = 1,8), Eq. (3.43) is solved
to give five eigenvalues from which the elements of g(@) are constructed. Forexample, if the
eigenvalues corresponding to themode @' = {6,,6,,0,} are A = {4,,4,,43,4,,45}, then,
from Eq. (3.11), g(@l) = Al The effective fine grid smoothing operation is obtained by

raising the smoothing matrices to the power of v!andv?, the pre— and post—smoothing

counts, respectively.

(iii) The Transfer Operators /I\’,fl andff

For a second—order interpolation, the Fourier symbol of the prolongation operator, from Eq.

(3.12), is expressed as
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?ﬁ,(@"’) = [1 + cos(@',")][l + cos(@f,_")][l + 008(95")] (3.46)

oo |—

The restriction operator, i , is computed from this equation and Eq. (3.13) assuming

full-weighing.

Based on the above operators, A/?(@) is assembled from M = S‘éz(l - I;‘ILI} 1Ith)S11’ LA
symbolic form is given in Appendix C. It is an 8x8 block matrix of which each elemental

block is a 5x5 matrix.

3.3.2 Solution Procedure

The eigenvalues for the bi—grid matrix M (®) are computed from Eq. (3.8) over fixed Fourier
modes to obtain the amplification factor. Sixteen modes are selected, in the range
— /2 < @! < 7/2. The smoothing factor is also computed from the generalized
eigenvalue problem (3.43) over only the high—frequency modes /4 < 10 < 7/2 as
Au_sg = max(Wl). In each case, the eigenvalues are solved for using the linear algebra
routines such as found in the IMSL library. Uniform flow is assumed with M = 0. 8, zero
yaw (a,) and angle of attack (a,),and y = 1. 4. Further, the grid spacing is assumed to be

uniform in all directions. Effects of aspect ratio and flow skewness are also investigated. The

time—step and Reynolds number are calculated from

Ar = CFL
[%+%+%+C/ﬁ+355+1#] (3.47)
2 2 2
. gm(m + 4y + 422) (3.48)

7

Some other pertinent definitions used are as follows:
M=Vt +v2+w? | Mys = % , v =utan(@,) , w = utan(a,) (3.49)

A batch file used to submit a typical 3-D test case is shown in Appendix D.
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3.3.3 Convergence Rates

In previous sections, we have thoroughly assessed the capability of bi-grid analysis to
predict more accurately the performance of multigrid methods using scalar model equations.
In order to completely rely on its results to guide us in correctly implementing multigrid
procedures in future chapters, it is equally very important to know how bi—grid will predict
multigrid performance in complicated practical problems. Rather than implementing
multigrid procedures for each of the schemes discussed above, as we have done for the scalar
model problems, we base our comparisons on the actual multigrid solutions obtained by
Anderson et. al. (1988) for the three upwind based factorizations using van—-Leer flux—vector
splitting. The multigrid solutions were obtained for the ONERA M6 wing at transonic
conditions: a Mach number of 0.84, an angle of attack of 3 . 06° and mesh size 97X17X17.
From Figs. 3.13(d)-3.13(f) the prediction (from both the single grid analysis and bi—gnd
analysis) rates multigrid performance for these schemes in this order: spatial, combination
and eigenvalue factorizations, which also agrees with the results of Anderson etal. However,
they experimentally found that practical multigrid solutions required an optimal CFL
number of about seven for each of the schemes. This is the exact result predicted by the
present bi—grid analysis, and is much greater than the CFL of about three predicted by the
single grid analysis. Anderson et al. also computed the convergence rates for the best scheme,
namely spatial factorization, and the worst scheme, namely the eigenvalue factorization.
Their results are compared with the values predicted by the bi—grid and smoothing factors in
Table 3.1. From this table, the superiority of bi—grid analysis over single grid analysis is
further demonstrated. Although the eigenvalue factorization has the worst multignd
convergence rate of 0.93, Anderson et al. found that it represents a good improvement over a
corresponding single grid computation with a convergence rate of 0.98. This latter value also

coincides with A ., computed in Chap. 2 for this scheme.
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Table 3.1: Convergence Characteristics of Transonic Flow on ONERA M8 Wing

Optimal Spatial Eigenvalue Combination Comment
(CFL, M)y —sg 3,0.76 3,0.80 4,0.75 single grid analysis
(CFLA) max —bg 7,0.89 7,0.91 7,0.89  bi—grid analysis

From Andersen et al.

(CFL.Q)mg 7,0.90 7,0.93 7, - (1988)
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3.3.4 Results for the Euler and Navier-Stokes Equations
Figure 3.13 shows the convergence results for the 3-D Euler equations using the upwind

schemes. The computed values for the smoothing factor(4,_s) and bi—grid amplification

factor (A ) for the spatial, eigenvalue, and combination factorizations based on the

max _bg
Steger-Warming flux—vector splitting are shown in Figs. 3.13(a)-(c), respectively. Both
factors predict instability for the spatial-split scheme, especially for a CFL number beyond
five. In the eigenvalue and combination factorizations, better convergence characteristics
are observed, although the smoothing factor’s prediction is slightly more optimistic. For
these two factorizations, bi—grid analysis predicts near instability at CFL number above 25,
. whereas the smoothing factor predicts unconditional stability for all CFL numbers. Figs
3.13(d)—(f) show predictions for multigrid performance of each factorization using the van
Leer flux—vector splitting. Except for the spatial factorization, all the schemes are predicted
unconditionally stable for all CFL numbers by both bi—grid and smoothing factors. The
spatial factorization is stable only for CFL numbers below 12 and possesses better
convergence characteristics at CFL number below 8 than the other two factorizations. From
both analyses, i.e. from (A, ;) and (.5 p,) van Leer flux—vector splitting gives better
convergence characteristics than the Steger—Warming method for multigrid procedures. Itis
observed that the present results of the smoothing factors for the van Leer method are similar

to those presented by Anderson et. al. (1988), and Demuren and Ibraheem (1994).

Results for the 3-D Euler equations using the LU approximate factorization with central
difference approximations and various levels of second- and fourth—order artificial
viscosities, #, and %, , are shown in Figs. 3.14(a)-(c). Without the addition of second-order
dissipations, i.e. %, = 0, the coefficient x, = 0.3 yields the optimal results (see Fig.
3.14(a)). From Figs. 3.14(b) and 3.14(c), bi~grid and single grid analyses predict that an
appropriate combination of x , and x , (especially whenx, = x,) can significantly improve

the performance of the LU scheme when used as a relaxation scheme for multigrid. Also for
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all levels of dissipation, the smoothing factors estimates are more optimistic than the bi—grid

results, especially at lower CFL numbers.

The convergence characteristics for the 3—D Euler and Navier-Stokes equations for different
levels of artificial dissipation and Reynolds numbers are shown in Figs. 3.14(d)—(f) and Fig.
3.15, using the Beam-Warming (ADI) central difference scheme as the base solution
algorithm. With no dissipation added to the Euler equations (Fig. 3.14(d)), the bi—grid
analysis predicts instability for all CFL numbers, while the smoothing factor predicts
stability for CFL numbers below 15. From Figs. 3.14(e) and 3.14(f), optimal multigrid

performance is predicted by the bi—grid analysis for dissipation levels of €, = 0.5 and

g; = 1.0 . These results are similar to those obtained for the Navier-Stokes equations at
Re=10° (see Fi gs. 3.15(d)-3.15(f)). With Reynolds number of 100 and no dissipation, both
bi—grid and smoothing factors predict stability for certain range of CFL numbers although
the latter is more optimistic. Also at this Reynolds number, the optimal dissipation levels are

Ee=0.5ande;=1.0.

All computations have been based on zero yaw and angle of attack, and also on uniform grid
spacing in all directions. Sensitivities of convergence characteristics to flow skewness and
aspectratio are studied using the ADI central-difference scheme at Reynolds number of 100,
and dissipation levelsof e, = 0.5 ande; = 1.0 . The results are shown in Figs. 3.16 and
3.17. Generally, convergence characteristics are improved with increases in yaw angle at
zero angle of attack, although the range of stable CFL numbers becomes smaller (Figs.
3.16(a)-(c)). From Figs. 3.16(d)~(f), no significant difference is observed in the
convergence results when the yaw and angle of attack are set equal to each other. However,
from Fig. 3.17, the convergence characteristics become worse with increases in grid aspect

ratio.
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Fig. 3.1: 1-D Convection Equation (a) Steady solution (b) Convergence
Characteristics (Euler forward explicit; Periodic B.C's).
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Fig. 3.2: 1-D Convection Equation (a) Steady solution (b) Convergence
Characteristics without local relaxation (c¢) Convergence Characteristics with

local relaxation(Euler forward explicit; Dirichlet B.C's).
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Fig. 3.3: Convergence Characteristics for 1-D Convection Equation (a)Standard
(b) Lallemand (c) van Leer Coefficients (4—Stage Runge Kutta; Dirichlet B.C's)

61



cfl

Fig. 3.4: Convergence Characteristics for 1-D Convection Equation
(4—Stage Runge Kutta; Dirichlet B.C's; van Leer coefficients).
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Fig. 3.5: Convergence Characteristics for 1-D Convection Equation
(a) Implicit (b) Semi—implicit time integrations (Dirichlet B.C's).
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Fig. 3.7: Convergence Characteristics for 1-D Diffusion Equation
(4—Stage Runge Kutta; Dirichlet B.C's; van Leer coefficients).
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Fig. 3.8: Convergence Characteristics for 1-D Diffusion Equation
(a) Implicit (b) Semi—implicit time integrations (Dirichlet B.C's).
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Fig. 3.10: 1-D Burger's Equation (a)—(d) Convergence
Characteristics (Euler forward explicit; 2nd O accurate).
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Fig. 3.11: 1-D Burger's Equation (a)—(d) Convergence
Characteristics (Implicit time integration).
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Fig. 3.12: 1-D Burger's Equation (a)—(d) Convergence
Characteristics (Semi—implicit time integration).
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Fig. 3.16: 3-D Navier—Stokes Equations using central schemes (a)—(f) Convergence

Characteristics; Flow Skewness (Re=100, €,=0.5, ¢,=1, vi=1; v2=0)
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Fig. 3.17: 3—-D Navier—Stokes Equations using central schemes (a)-—(f) Convergence
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3.4 Concluding Remarks

Bi-grid stability analysis has been presented for typical explicit and implicit solution
methods for model problems which range from the diffusion equation to the convection
equation and including the convection—diffusion equation at different Peclet numbers.
Bi—grid amplification factors were compared with smoothing factors and multigrid
convergence rates. The predicted bi—grid amplification factors agree quite well with the
asymptotic convergence rate of the multigrid method. The smoothing rate ot the relaxation
scheme obtained from a local mode analysis on a single grid is not an accurate predictor of the
multigrid convergence rate. For multigrid performance in large scale practical
computations, bi~grid amplification factors and smoothing factors were computed from the
system of 3-D Euler and Navier—Stokes equations; various approximate factorization
methods that are popular in practice have been considered. The bi—grid results also compared
better with the convergence rate of a typical multigrid solution of the 3—D transonic flow than
did predictions of the smoothing factor approach. Armed with this versatile tool, the
multigrid procedure can now be developed in subsequent chapters for both 2-D and 3-D

steady flows.
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Chapter 4
COMPUTATIONAL METHOD

The 2-D and 3-D Proteus computer codes were developed at NASA Lewis Research Center
by Towne et al. (1990, 1992). The codes solve the Reynolds averaged, unsteady
compressible Navier—Stokes equations in strong conservation law form. The governing
equations, derived from the basic principles of conservation of mass, momentum and energy,
are written in Cartesian coordinates and transformed into generalized nonorthogonal body
fitted coordinates. They are solved by marching in time using a fully coupled
alternating—direction—implicit (ADI) solution procedure with generalized first— or
second—order time accuracy. Turbulence effects are accounted for using either an algebraic
or two—equation eddy viscosity model. A brief summary of the mathematical formulation for

the 3-D version follows.
4.1 Governing Equations

The basic governing equations are the three—dimensional compressible Navier—Stokes
equations. In generalized curvilinear coordinates, the three—dimensional planar equations

can be written in strong conservation law form using vector notation as:

Q_Q+B(E—Ev)+6(F—FV)+6(G—Gv)=

3 3 p 5 0 (4.1)

where the conserved variables of vector Q are defined as:
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0 = 1o, ou, ov, ow, oe,l”

=

The inviscid flux vectors E, F and G are

pan.

~i=

"
il
=

out, + ovg, + owl,

=

The viscous flux vectors Ey, Fyand Gy, are

0
E _ 1.1 Tobx + Toby + T4,
VoOJIRer | b 41 f, + 1k,
szgx + Tyz&y + TZZEZ
| B + By + Bk
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ouby + ovEy + owé,
(ou? + p)x + owik, + ouwé,
owk, + (ov: + p)E, + ovwE,
ouwt, + owwk, + (ow? + p)E;
| (0eo + plubx + (0e, + pIVEy + (0e, + pIWE: |

oun, + ovy, + own,
(ou? + plnx + ouvmy, + ouwn,
ouvx + (0V? + plny + ovwn,
ouwnx + evwyy + (ew? + pln.
| (0e, + phugx + (0o + pIviy + (0eo + PIWn,

(ou? + pJox + oty + ouwt,
owts + (ov? + pJy + ewwi;
ouwly + 0w, + (ow? + p)t.
| (0eo + pluls + (0eo + pIVEy + (0eo + pIWE, |

(4.2)

(4.3)

4.4)

(4.5)

(4.6)



where

and

i 0
11 Todx + Toly + Txbs
Gv = JRe
T Tobx + Tyly + 138
Txtox + Tysz + 18,
| B+ oLy + Bl
i 0
11 | ™= T Tofly + T2
FV ==
JRe,

Tyl x + Tylly + TyM:z

1
ﬂx= uTU+Vl'xy+thz—-PTrqx
_ o L
By = Uty + vy, + Wiy, pr. 9

1
By = Uty + vy + Wiy — f’—r_,qz

ox ox 9y 0z
= e 2 2 )
o= @ e 2 1)
rxy—y(g—;+%),t&—y(%§+
P= - k5L
y__k%g
v——k?)_z

Tadlx + Tyly + Tl

N B + .Byﬂy + B,
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(4.8)

4.9)

(4.10)



The governing equations as expressed above have been nondimensionalized using reference
conditions u,, I, o, and7T,. The derivatives in the shear stresses and heat fluxes are in
Cartesians coordinates and must be evaluated in terms of the generalized coordinates using

the chain rule. For example,

du _dup , du. ., du

Note that the conserved variables and all the fluxes are defined in curvilinear coordinates and
not in Cartesian coordinates as in Chaps. 3 and 4. In addition to the above equations, an
equation of state is required to link the pressure to the dependent variables. The ideal gas law

is chosen which for a calorically perfect gases can be written as
p=1@- 1)[9eo - %Q(u"' +vi+ wz)] (4.12)

4.2 Time Differencing

The governing equations are solved by marching in time from some known set of initial
conditions using a finite difference technique. The time differencing used is the generalized
scheme of Beam and Warming (1978), where the time derivative term in Eq. (4.1) is written

as

90 _ 0, QM 190" 6, 40¢~D ( ~1_
o S1+0, o 1+6,0 140, A 003 ez)At°(At)2 (4.13)

or,

a_ 041 040" At 90" 0,
AQ_1+02 at 1+026t+1+92

20 + o (0, - & - o2)avcana] @14

where AQ" = Q"*! — Q"
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The parameters 6, and 6, determine the type of time differencing scheme used. Some of the

methods available with the above formula are given in Table 4.1.

Table 4.1: Different Types of Time—Stepping Methods

0, 0, Method Truncation Error

0 0 Euler explicit oUdn
0 -1/2 Leapfrog explicit 0d1)?
1 0 Euler implicit o)
172 0 Tapezoidal implicit o dn?
1 172 3—point backward implicit oA 1)?

Solving Eq. (4.1) for 9Q/adr and substituting the results into Eq. (4.14) for d(4Q™)/dt and

aQ"/at yields
n_ 041 (IAEm  9AFM | 9AGM\ At (Er | 9F" | IG™
40" = 1+62( TR ) 1+02(a§+an+ac
6,41 (a(AE’(,) dAFY) a(AG';))

T+0,\ & @ ' @ (4.15)
1+92(6-§ Y T ) TTEe,A0 T o0 Ty O andn,

-+

4.3 Linearization Procedure

Equation (4.15) is nonlinear, since, forexample, AE" = E"*! — E"and the unknown E"*!is
a nonlinear function of the dependent variables and the metric coefficients resulting from the

generalized grid transformation. The equations are linearized in order to use the finite
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difference technique. For any nonlinear expression G, a Taylor series expansion about a

known time level n can be written as
6"l = 6" + %ﬁfm + 041 (4.16)

This linearization procedure, when applied to the entire inviscid fluxes 4E", AF™ and AG"

terms in the Eq. (4.15), can be expressed as

w _ (9E"\ o 2
AE" = (OQ)AQ + O(4r)
no_ oF" " n 2
AF" = (@)AQ + O0(4r) 4.17)
oG™

no_ _" n 2
AG _(aQ)AQ + 0(Ar)

(0E/3Q)", (aF/0Q)" and (9G/aQ)" are the flux Jacobian matrices.

The viscous fluxes 4E%,, AF},and AGY, are also linearized, although in a slightly different
manner. The mixed, or cross, derivative terms in these fluxes would lead to considerable
complications in the implicit numerical solution algorithm. In order to avoid this problem,

the fluxes are split directionally as
FV=FV +FV (4.18)

Thus, Ey . Fy and Gy, only contain derivatives in the £ and # directions, respectively, and
Ey Fy and Gy contain derivatives in the other direction. The linearization for the E, Fy,
and Gy fluxes is carried out in a similar manner as in the inviscid case while the cross

derivatives terms are simply lagged as follows (Beam and Warming, 1978)
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AE;, = AE! + 041’
AF;, = AF)1 + 041’ (4.19)

— -1 2
AG’{,2 = AG"’,2 + 0(41)

With these equations, the linearized form of Eq. (4.15) can now be written as

o 0] 400
e ]

At ("E + & "’G) L At (aEVl oFy, aGV])" (4.20)

TT+6,\08 Tamta) TTre\ e T T

(1 -+ 93)At aEV2 + BFV2 + anz " 93At aEV2 + (91:‘/2 + aGV2 g
1+ 6, o0& o ag 1+0,\ o6 on oL

- +2 OZAQ("“) + 0[(61 - % - 92)(At)2,(63 - 6,)dn?, (Az)z]

-+

6, is introduced to replace 6, in the coefficients of the cross derivative viscous terms. 65 1s set
equal to 6, for second—order time accuracy. For first-order time differencing, however, 6,

can be set equal to zero without losing accuracy.

Equation (4.20) can be further put in the following form:

|2 0t aE 9y, + 9 [9F _ v, + 296 _ W, 40" =
1+6, ag 30 | " m\ae0 a0 C @ a0
Al (QE . ﬂ . a—G—>n At (aEVl + aFVl + aGVl)

0\ Iy oL 1+ 6,\ o0& an ag
N a1+ 93)A1,‘(C7Ev2 N dFy, anz) 0,41 (aEv2 + oFy, anz)

4.21)

150, \98 "oy "ot ) TT+6,\ & T Tom @
02

1+6,

+ A0 + 0[(9] - % - 62)(41;)2,(93 - 0,)d0?, (At)z]

where /0 term as an example is meant to imply
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a (3EN | om — 8| (3E\ 4 on
[BE(@) ]“Q '65[(6Q)AQ] 4.22)

4.4 Solution Procedure

The governing Eq. (4.21), presented in linearized matrix form result in a system of algebraic
equations. The coefficient matrix is banded and the band width depends on the grid size and
choice of spatial differencing method. The left hand side requires an inversion of a very large
matrix. The exact inversions of the matrix is very costly due to the large number of operations
and computer memory required. To reduce this computational expense, an approximate
factorization (AF) method is introduced which factors the implicit operator into a sequence
of easily invertible matrices. The splitting is based on the alternating direction implicit (ADI)

method of Beam and Warming, where splitting is along the spatial directions as follows:
_ 0,41 5 (g _ 9Ev, 0.4t 5 (aF _ 9Fv,
LHS“'”'[”W%(&)Q a0 )| |t Tem\e0 0
I:l+-1—+—e2i(w ——aQ 40"+ h.o.t

The higher—order—term (h.o.t) represents the splitting error which can be neglected without

(4.23)

affecting the overall time accuracy of the algorithm, even when second—order time
differencing is assumed. However, this approximate factorization error may place a

restriction on the choice of time step.

Equation (4.21) can thus be rewritten in a spatially—factored form, which, neglecting the

temporal truncation and splitting error terms, becomes
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{4 04 8 aE 9Ey, [+ 04 8 oF _ 9Fy,
1+ 0,0E 20 T+6,m\30 ~ 30

oG
I+ 0.4t aG _ %9v, 40" =
1+86 C 30 00

- - 429
T+ 0,00 T Tat) TTro,\ @ T T e
(1 + 93)At aEV2 + BFV2 4 aGV2 _ 93At aEV2 + a}:'V2 + aGV2 9 AQ(H 1
1+6, \( o6 9m o 1+6,\ o6 o i | TT+o

The equations in the approximate factorization form presented above are split into the

following three—sweep sequence:

Sweep 1 (£ direction)

OlAt oF aEVl *
[I Ty 92a§<aQ 30 )] 40" =

dE, dFy, 3Gy \
A4t (aE +ﬁ) 4 _4r ( Rl N Vl) (4.25)

T T1+6,\08 F13 1+6,\ o an g

1+ 0, & on ol 1+6,\ 9 an o 1+ 02

Sweep 2 (5 direction)

0t o (o5 _ N\ o o

Sweep 3 (¢ direction)

0,4t 5 (oG _ 9, . =
['+1+92a§(aQ 0 )]AQ 40 (4.27)
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In the above equations, 0, 0™ represent intermediate solutions to the governing equation.
Each sweep requires the solution of a series of 5x5 block—tridiagonal systems and can be

efficiently solved using the Thomas algorithm.
4.5 Space Differencing

To solve the governing equations, an evenly spaced grid is defined in the computational (&,
) coordinate system. The spatial derivatives in Egs. (4.25) to (4.27) are then approximated by
second—order finite difference formulas. First derivatives in the £ direction are, for example,

approximated using the following central difference formula:

ﬂf fi+ 1j - fi- 1j
(ag) = Oyf;; = —E (4.28)
The subscripts i and jrepresent grid point indices in the £ and 7 directions, respectively. The

non—cross derivative viscous terms and the cross derivative viscous terms in the £ direction

all have the form —|f—=-(g4 Q)] and < ( ——) respectively. It can be shown that their

9 [ aE '3

second-order central difference approximation can be written as

5[ A Q)] = 8,82 0)]
{(f 1+ L)@y = (fimry + Uiy + S840, (4.29)
+ (fi,j + fi+1,j)(gA D)1/

248

W (4.30)

When first derivatives are needed normal to a computational boundary, such as for Neumann

boundary conditions, either first— or second—order one—sided differencing is used.
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4.6 Artificial Viscosity

With the central difference formulation presented above, high frequency instabilities can
appear as the solution develops. For example, in high Reynolds number flows oscillations
can result from the odd-even decouplings inherent in the use of second-order central
differencing. In addition, physical phenomena such as shock waves can cause instabilities
when they are captured by a finite difference algorithm. Artificial viscosity, or dissipation, is
normally added to the solution algorithm to suppress these high frequency instabilities. Two
artificial viscosity models are considered in this study: a constant coefficient model used by
Steger (1978), and the nonlinear coefficients model of Jameson, Schmidt and Turkel (1981).
The constant coefficient model uses a combination of explicit and implicit artificial
viscosity. The explicit artificial viscosity is further a combination of fourth— and
second—order differences. As stated by Caughey (1988), the second—difference terms
dissipate spurious waves in the shock region and fourth—difference terms are employed for
steady state convergence. The implicit artificial viscosity is sometimes necessary to extend

the linear stability bound of the fourth~order explicit dissipation.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the

following terms to the source terms in Eq. (4.25):

e

(V.0 + 9,0 + V,4,0) - @[(Veﬂg)b + (V) 0 + (VCA;)ZQ] (4:31)

The implicit artificial viscosity is implemented by adding the following terms to the implicit

terms of Egs. (4.25) to (4.27), respectively
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# [v A,140") (4.32a)
- %[V,,A n(JAQM] (4.32b)
eAt
I

[VCA LIAQM) (4.32¢)

In Eq. (4.31), ¢ and &} are the second— and fourth—order explicit artificial viscosity

coefficients, and in Eq. (4.32), ¢, is the implicit artificial viscosity coefficient.

The nonlinear coefficient artificial viscosity model is strictly explicit. Following the

approach of Pulliam (1986), the following terms are added to the source term of Eq. (4.25).

)+ () oa- )

Al

ol ) e -noal)

where ¢ is define as

)j+1 + (%)jjl(srzran - egA,,V,,A,,Q)I, (4.33)

¢ =+ ¢y + ¢ (4.34)

and ¢,, ¢, and ¢, are spectral radii defined by

Exu + Ev + Ewl + a /§§+§§+§§

¢X - AE

s + nyv + powl + a /nt +n2 + n? (4.35)
¢y = An

ot + Ly + EoWl + a G2+ 2 + (2
¢Z = AC
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The parameters £ and ¢* are the second- and fourth—order artificial viscosity coefficients.
Instead of being specified directly by the user, as they are in the constant coefficient model, in
the nonlinear coefficient model they are a function of the pressure field. For coefficients of

the £ direction differences,

x Atmax(0;,,0,,0;_,)

max(O,x4At - (gg)‘) (4.36)

g ——”
- -
I i

where

Piv1 — 2P, + D ’

0’4=
‘ IP,‘+1 - 2p,+ pi_y

(4.37)

Similar formulas are used for the coefficients of the 5 direction differences.

The parameter o is a pressure—gradient scaling parameter that increases the amount of
second—order smoothing relative to the fourth—order smoothing near shock waves. The logic
used to compute ¢4 serves to switche off the fourth-order smoothing when the second—order
smoothing term is large. The parameters x, and x4 are user—specified constants, and the

optimum values are problem dependent.

4.7 Turbulence Models

The Navier—Stokes equations Eq. (4.1) solved in this study are time—averaged; i.e., they are
the Reynolds—-averaged Navier-Stokes equations. Therefore, they do not contain enough
information for turbulence to form a closed set of equations. To remedy this problem, the
Reynolds stress and turbulent heat flux terms are modeled using the Boussinesq approach.
The turbulent Reynolds stress resulting from time averaging is assumed proportional to the
laminar stress tensor with the coefficients of proportionality defined as eddy viscosity, u,.

Similarly, the turbulent Reynolds heat flux is assumed to be proportional to the laminar heat
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flux with the coefficient of proportionality defined as turbulent thermal conductivity, k,. An
effective viscosity is thus defined as x4 = y, + u,, and an effective thermal conductivity
coefficient is defined as k = k; + k,. u,is the laminar (or molecular) viscosity coefficient,
and k, is the molecular thermal conductivity coefficient. These turbulence coefficients are
computed in this study using either a generalized version of the Baldwin and Lomax
algebraic eddy viscosity model (1978), or the Chien (1982) model. The formeris a two-layer
algebraic model while the latter is a two—equation k — & model. The Chien formulation for
the k — £ modelis chosenin particular because it is numerically stable and approximates the
near wall region reasonably well. A detailed analysis of these two turbulence modelling

methods is presented by Towne et al. (1990).

4.8 Boundary Conditions

Improper treatment of boundary and initial conditions can lead to serious errors and perhaps
instability in the numerical solution. For the above solution algorithm, the boundary
conditions are treated implicitly. Several types of boundaries that can be encountered in real
problems are adequately provided for. Such boundaries can be real or artificial. Real
boundaries include simple solid or porous surfaces and artificial boundaries can be far field
boundaries or symmetry planes. Since the equations are solved by marching in time, a set of
initial conditions (throughout the flow field) is also required to start the time marching
procedure. For unsteady flows, they should represent a real flow field, and a converged
steady state solution from a previous run or experimental results may be a good choice. For
steady flows, the ideal initial conditions would represent a real flow field that is close to the

expected final solution.
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4.9 Concluding Remarks

The above formulations have been made for the 3-D planar form of Navier—Stokes
equations in curvilinear coordinate system. Detailed analysis including formulation for
axisymmetry forms can be found in Towne et al. (1992). Complete formulation for the 2-D

version can also be found in Towne et al. (1990).
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Chapter 5
MULTIGRID METHOD AND RESULTS

A multigrid procedure has been developed to accelerate the convergence of the
Beam-Warming ADI numerical scheme formulated in previous chapter. The multigrid
algorithm adopted is the Full Approximation Storage Full Multigrid method (FAS-FMG)
which is applicable to nonlinear systems of equations. Test problems with different
geometries and flow conditions are selected to validate the implementation. Practical
convergence rates are compared with predicted rates from both the bi-grid and the single

grid analyses for a 2-D problem.
5.1 Full Approximate Storage Full Multigrid (FAS-FMG)

Consider the problem
LAU*) = f* (5.1)

where L” is a non-linear operator on a grid, g”, with spacing A. The forcing function, f, is
known and U” is the solution to the problem on the grid with spacing h. Taking u* as an

approximation to U* with an error

Vi = Ur -t (5:2)
Equation (5.1) can be expressed as

LMu" + V*) = f* (5.3)

L*uP is subtracted from both sides of Eq. (5.3) to give
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LAk + V*) = LHuk) = fr = LA(uh) (5.4)

If the terms are smooth, they can be represented on a coarser grid, g2 with spacing 2. The

grid g* is formed by deleting every other point in g”; therefore, g?” is a subset of g” . Points

are eliminated from g% to form g*, and so forth, to form g8, g6

etc. Each subsequent grid is
a subset of the previous grid, which places compatibility constraints on the number of grid

points in each direction. On the coarse-grid, g?*, Eq. (5.4) becomes

Lyt + V) — L2A(2hk) = PR(f — LA(uh)) (5.5)
or

L{U) = fh (5.6)
where

2 = P~ D) + 220 e

where 2% is the restriction operator.

Since Eq. (5.6) is on a coarser grid than Eq. (5.1), the numerical solution for 1" is much less
expensive to obtain because fewer points are involved. Note that the operator used on the
coarse—grid has the same form as the fine—grid operator, the grid spacing (# and 24) being the
only difference. Once the values of u? are obtained, the fine—grid iterative solution is

updated using the following equation:
() = () g + T = () ) (5.8)
and 1%, is the prolongation operator.

A grid with spacing 4hcan then be used to find corrections to the ”solution” of the problem on
the grid with spacing 2h. Successively coarser grids may be used until a grid is reached which
is so coarse that a direct solution may be used (or a nearly exact solution with only a small

number of iteration sweeps). The correction from the coarsest grid is then used to correct the
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correction on the next finer grid; and this is continued through successively finer grids until

the finest level is reached and the approximate solution is updated.

The usefulness of corrections obtained on a coarser grid is dependent on the smoothness of
the fine—grid error passed to the coarse-grid. Hence, it is absolutely necessary that the
high—frequency components of the error on the fine-grid be minimized, if not completely
eliminated. It is the responsibility of the smoother to dampen out the high frequency
components of the error. The removal of the low-frequency components of the error is
unimportant for all but the coarsest grid since these frequencies can be resolved on the
coarser grids where they become high frequencies. If the high frequencies are not damped,
then the restriction operator will pass aliased information to the coarser grid and the entire
multigrid scheme will cease to converge. Obviously, the choice of the smoother is critical to
the proper functioning of multigrid. Some smoothers are naturally effective and some have
to be modified. For instance Elmiligui (1992) has developed coefficients for Runge—Kutta
multistage time—stepping scheme such that good high frequency damping can be achieved at
relatively high CFL numbers. In the present work more accurate analytical tools, presented

in Chaps. 2 and 3, have provided insight into the effectiveness of the smoother used.

The cycle of work performed, starting on the finest grid, successively using the coarser grids,
and then returning to the finest grid is called one multigrid cycle. The cycles are repeated
until sufficient convergence is obtained on the finest grid. Examples of popular multigrid

cycles are sketched in Appendix E.

The restriction operator has two forms. One form is used to restrict the dependent variables,
I#(u"): ie.. the flow field quantities o, ou, pv,andge, and the other form is used for the
restriction of residuals, Iﬁ"[L"(u")]. In this study, the injection method is used in the former

and the full weighting technique is used in the latter. The prolongation operation, %, used in

the current work is a bi-linear interpolation for 2-D, and tri-linear interpolation for 3-D.
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With this general discussion of the FAS-FMG algorithm in focus, its application to the

formulated ADI scheme becomes clearer.
5.2 Multigrid Application to the ADI scheme

The 3-D ADI scheme can be written in the operator form:

where L,, L, and L, are operators to represent the implicit ADI factors, and 4Q,Atand R are,
as usual, flow field corrections, time step and residual. A simple multigrid cycle is performed

as follows:

(1) Solve Eq. (5.9) on the finest grid g*, i.e.,
LALALEAQ" = — AR (5.10)
(2) Compute the flow field at the present time step.

(Q"*HE = (O + Wk (5.11)

(3) Compute the residual R* from the right-hand side of Eq. (4.22),

(4) Transfer the flow variables Q" and residual R” to grid g?* and compute the forcing terms

P as follows:

P = ['RR — RM(Q) (5.12)

(5) Then, the coarse grid g?* problem, driven by the forcing terms, becomes:

L%hL%thhAth = —At(th(th) + 1121th _ R2h(1%th)) (5]3)
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(6) Steps (3)—(5) is repeated recursively on g*, g8, etc. to solve for the corrections, and the

cumulative corrections are interpolated on to the fine grid and added to the solution, until the

finest grid g”, for example:

Q2h -— Q2h + 1%2(Q4h — IngZh) (514)

Q" < Q" + 1% (0% - Eroh (5.15)

The above steps are repeated on the fine grid until R* = 0 or a predetermined tolerance level,
since we are interested only in steady state solutions. Depending on the schedule for the grids
and the order in which they are visited, the multigrid structure may take the form of a simple
V—Cycle or more complicated ones like the full multigrid V-Cycle or the W—ycle. See
Appendix E for some samples. In the present study, the full multigrid V-Cycle is utilized

throughout.

In general one iteration is performed on the finest grid, one on intermediate grids and four on
the coarsest grid. But on coarser grids, the computational work is successively reduced by a
factor of 4 for 2-D and by a factor of 8 for 3—-D. This implies that the computational work
units (relative to a single grid iteration on the finest grid) for a three—level multigrid cycle is

3

1 Zfor 2-Dand 1 —l%for 3-D. Additional overheads for intergrid transfers, generation of grids

and calculation of metrics on coarser grids, calculation of residuals, etc., raise the total work

3

2 and 2 respectively, for 2-D and 3-D multigrid procedures. That is, the

units to about 2

multigrid convergence rate must be faster by at least these factors for there to be a saving in
CPU time. One method for reducing the relative overhead of the multigrid procedure is to

perform more fine grid iterations per multigrid (MG) cycle, e.g., three iterations on the finest
grid instead on one. Then the effective total work units per MG cycle are reduced to 2 and 1 i,

respectively. Preliminary tests showed that this latter approach is better for 2-D
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computations whereas, the former approach is better for the 3-D computations. In the 2-D
case, the slower convergence rate resulting from performing a MG cycle only every third
fine—grid iteration is more than compensated for by the cheaper overall MG overhead,
whereas in the 3-D case, where the MG overhead costs are lower, the faster convergence rate
of performing one MG cycle per fine—grid iteration is dominant. These approaches are

mostly used in the results presented in subsequent sections.

5.3 2-D Multigrid Solutions

5.3.1 Test Problems

Various test cases shown in Table 5.1 were investigated to validate the implementation of the

multigrid cycles in the 2-D version of the Proteus code.

The geometry for the various cases are shown in Fig. 5.1. The first two test cases are the
steady, inviscid and viscous flow past a two-dimensional circular cylinder. Inviscid and
viscous solutions were obtained at different reference Mach numbers ranging from 0.05 to
0.6. A reference Reynolds number of 20 is assumed for the viscous case. For the Euler
inviscid flow, freestream conditions are prescribed at the far field which are then used to start
the computation. The exact potential flow solution is used to start the viscous flow
computations. The next two test cases are turbulent flow over a flat plate at zero pressure
gradient with a freestream Mach number of 0.3. The Baldwin-Lomax turbulence model was

used in the first case while the Chien k — £ model was used in the second case.
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Table 5.1: Description of Test Cases for 2-D

Test Case Flow Problem Coarse grid Fine grid

1 Inviscid 25X49 49X97
Cylinder

2 Viscous 49X49 97X97

3 B/L 81X53 161X105
Flat Plate

4 Chien 81X53 161X105

5 Non-Linear 81X51 —
Transonic

6 Constant 81X51 -
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Fig. 5.1: Computational mesh for the test cases (a) Viscous flow around a cylinder (b) Euler
flow around a cylinder (c) turbulent flow over a flat plate (d) Sajben transonic flow.
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The Blasius solution for a laminar boundary layer over a flat plate was used to set the initial
conditions for the turbulent flow computations with the Baldwin—Lomax model. To start the
computations in the case with the Chien & — € model, the converged solutions from the
Baldwin-Lomax model were used to compute the turbulent quantities required to march the
k — ¢ equations. The last test case is a transonic turbulent flow in a converging—diverging
duct. The flow entered the duct subsonically, was accelerated through the throat to
supersonic speed, then decelerated through a normal shock and exited the duct subsonically.
This is a popular laboratory test case which can mimic real inlet flows; e.g., see Sajben et. al.

(1984). The geometry is obtained from the following equations:

1.4144 for—4. 04 =x=< —2.598
y = acosh&/(a — 1 + cosh§) for—2.598 < x < 7.216 (5.16)
1.5 for 7.216 = x<8.65

where the parameter £ is defined as

_ Cl(x/x,)[l + sz/xl]c3

& (1 = x/x)C

(5.17)

The various constants used in the formula for the top wall height in the converging

—2.598 = x < Oand diverging (0 < x < 7. 216) parts of the duct are given in Table 5.2.

In all cases, appropriate boundary conditions were set so as not to impair the convergence
acceleration. The steady-state solutions of the various test cases described above are shown

in Fig. 5.2.
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Table 5.2: Constants for Computational Coordinates calculations

Constant Converging Diverging
a 1.4114 1.500
X; — 2.5985 7.216
C, 0.8100 2.250
c, 1. 0000 0. 000
C; 0. 5000 0. 000
Cy 0. 6000 0. 600
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5.3.2 Multigrid Performance

In order to evaluate the multigrid performance implemented in this study, the /, norm of the
residual for the continuity and momentum equations are plotted against the number of
iterations. For each of the coarse grids and the fine grid, three calculations are performed:;
single grid, two-level multigrid (MG) and 3-level MG. Figs. 5.3 and 5.4 show the result of
the Euler flow at M = 0. 2 where MG reduced the number of iterations by a factor of
about two. However, no gain is observed in the CPU saving (see Table 5.3). The additional
work unit required in this case by MG cycles offset the gain in convergence. Viscous flow
results are shown in Figs. 5.5-5.10 for different freestream Mach numbers. At M. = 0. 2,
similar conclusions drawn for the Euler above are observed. At M, = 0.05 and
M. = 0. 6, however, faster convergence and substantial savings in CPU time are obtained
especially on the fine grid. Forinstance,at M = 0. 6, three-level MG at a CFL number of
four reduced the number of iterations by a factor of about five on the fine grid, at a measured
savings of about 62% of the CPU time. In this case also, multigrid successfully relaxes the
stiffness per time—step since the single grid computation failed if the CFL number is greater

than two, while the MG can go up to four. These results are summarized in Table 5.4.

The influence of turbulence models on the performance of multigrid is studied in cases three
and four. Figs. 5.11-5.12 show the convergence history of the three calculations mentioned
above for turbulent flow over a flat plate using the Baldwin-Lomax model to compute the
turbulence quantities. Convergence is accelerated by more than a factor of two both for the
coarse grid and fine grid. The measured saving in CPU time in this case is about 20% for the
fine grid and only about 10% for the coarse grid. The superiority of MG 1is finally
demonstrated in Figs. 5.13-5.14 where the Chien k — &£ model was used for turbulence
closure. In fact the single gnid failed to converge even after a very large number of iterations
(10,000 for the coarse grid and about 9,000 for the fine grid), whereas the MG converged in

about 4,000 cycles. Further, the single grid computation was limited to a CFL number below
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Table 5.3: Multigrid Performance of 2-D Inviscid Test Problems

Grid Level CFL  lter Ti?ni[is) PP Remark
1 10 260 7.9 Optimal cfl
Coarse 2 8 160 9.9 0.80 Optimal cfl
3 6 170 13.1 0.60
1 10 420 28.6
Fine 2 10 230 29.6 0.97
3 10 240 359 0.80
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Table 5.4: Multigrid Performance of 2-D Viscous Test Problems

CPU  Speedup

Case Grid Level CFL Iter  Time (s) Factor
1 10 340 17.5
Coarse 2 10 230 23.0 0.76
3 10 240 282 0.62
M=0.2
1 10 710 103.7
Fine 2 10 390 1048 .99
3 10 330 97.6 1.06
1 2 1460 72.3
2 2 720 697 1.03
Coarse 3 2 780 86.2 0.83
2 3 510 49.6  1.45
3 4 750 833 0.87
M=0.6
1 2 3440 492.8
2 2 1710 448.7 1.09
Fine 3 2 1430 403.1 1.22
2 3 1140 299.0 1.65
3 4 680 1940 2.54
1 10 1270 62.6
Coarse 2 10 760 73.5 085
3 10 780 86.5 0.72
M=005 1 10 2510 361.3
Fine 2 10 1280 336.7 1.07
3 10 1100 312.5 1.16
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five, while the MG was successful up to a CFL number of 20. Although MG acceleration is
clearly demonstrated in each of the models, it performed much better with the Chien model.
The additional stiffness in the latter introduced by solving the k — ¢ equations is by far offset

by its better predictions of the Reynolds stresses. Tables 5.5 summarizes these resutls.

From Fig. 5.15, the trace of the skin friction at a point in the flow domain shows that the
Sajben transonic flow is inherently unsteady. This is further confirmed in Figs. 5.16-5.17
where the convergence history oscillates for both the single grid and two-level MG
calculations. In Fig. 5.16, the Jameson type of non-linear dissipation has been used whereas
in Fig.5.17, constant dissipation was assumed. Similar results (not shown) were observed on
the finer grid. This inherent unsteadiness has also been observed from experiment by Sajben
(1984) and therefore cannot be solved with the multigrid technique developed here.

Multigrid methods for unsteady problems need to be implemented (see Ibraheem, 1994).

5.3.3 Convergence Rates

In the above computations, the results of both the single grid and the bi-grid stability
analyses are continuously used as guidelines. For instance, the asymptotic convergence rates
(using Eq. (3.28)) that are computed from practical multigrid solutions of the test cases for
the inviscid and viscous flows past a circular cylinder are compared with the predictions
trom analysis in Fig. 5.18. Rather than evaluating the corresponding bi~grid and smoothing
tactors from uniform flow conditions, however, as performed in the analysis presented in
Chaps. 2 and 3, they are computed at each point in the flow field, thereby accounting for the
variation in flow properties. Figures 5.18(a) and 5.18(b) show estimates from both analyses
based on the computed frozen coefficients of the inviscid and viscous flows, respectively.
These results are also summarized in Table 5.6, and are compared with the asymptotic
convergence rate measured from the practical multigrid computations. For both flow
problems, the smoothing factor deviates more from the practical solution than does the

bi—grid factor.
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Table 5.5:Multigrid Performance of 2-D Flat Plate Test Problems

CPU Speedup

Case Grid  Level CFL Iter Time (s)  Factor Remarks
1 20 3320 283.2
Coarse 2 20 1730 268.8 1.05
3 20 1590 271.2 1.04
B/L
1 20 6950 1827.0
Fine 2 20 3690 1725.0 1.05
3 20 3060 1575.0 1.16
1 5 . >10000 >1180.0 Max. cfl
Coarse 2 20 3470 650.0 >1.81
3 20 3600 732.0 >1.61
Chien
1 5 >8680 >3422.0 Max. cfl
Fine 2 20 5540 3298.0 >1.03
3 20 5580 3398.0 >1.03
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Table 5.6: Convergence Characteristics of 2—-D Euler and Viscous Flows around a

Cylinder
Euler Viscous flow
CFL
Au_sg A max _bg Omg Au_sg A max _bg Omg

0.5 0.88 0.94 0.99 0.95 0.96 0.99

1.0 0.80 0.92 0.98 0.91 0.94 0.98
2.0 0.76 0.91 0.96 0.85 0.93 0.96
4.0 0.81 0.90 0.93 0.77 0.92 0.94
6.0 0.84 0.90 0.92 0.76 0.91 0.93
8.0 0.87 0.90 0.92 0.81 0.91 0.92
10.0 0.89 0.90 0.94 0.84 0.91 0.92
12.0 0.91 0.90 0.95 0.87 0.91 0.92
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Fig. 5.15: Trace of skin friction coefficients for Sajben Transonic flow; midway on lower
wall
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5.4 3-D Multigrid Solutions

5.4.1 Test Problems

The test cases for the 3-D multigrid procedure are the two problems chosen to illustrate the
original 3-D Proteus computer code (Towne et. al, 1992), namely the developing laminar
flow (M=0.1, Re=60) in a rectangular duct (Aspect Ratio = 5:1) and the turbulent flow
(M=0.2, Re=40,000) in an S—duct. In the latter, computations were performed separately
with either the algebraic Baldwin—Lomax turbulence model or the two—equation k — ¢
turbulence model with low Reynolds number extensions proposed by Chien (1982). In each
case, computations were performed on the standard grid and on a coarser grid. Table 5.7
summarizes the test cases. The standard CFL number of ten is used on the finest grid in each

case.

Table 5.7: Description of Test Cases for 3-D

Test Case Flow Problem Coarse grid Fine grid
1 Laminar Rectangular  41x21X21  101X21X41
duct
3 B/L - 81X33X65
S—-duct
4 Chien 41X17X33  81X33X65

5.4.2 Multigrid Performance

The convergence rates of the single grid and the multigrid solutions for the developing duct
flow are compared in Figs. 5.19 to 5.22. Coarse grid results in forms of the L2 norm and the
average residuals of the continuity, x—, y—, z-momentum equations are presented in Figs.
5.19 and 5.20, respectively. It is clear that the MG solutions converged faster than the single
grid one. The initial multigrid error is lower, because the full multigrid procedure provided

better initial guesses on the fine grid by initially performing about 200 iterations on the
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coarsest grid. In this case the MG cycle was performed every third fine grid iteration, so that
the effective work units for each MG cycle is about 1.6. Thus, for a five order of magnitude
reduction in x-momentum residuals, there is about a 20% saving in total CPU time with the
3-level MG procedure. The fine grid results presented in Figs. 5.21 and 5.22 show even
better savings. In this case, there is an MG cycle for every fine—grid iteration, so that the
effective work units for each cycle is two. But for a five—order reduction in residuals the MG
method (2 or 3 level) requires about 400 iterations whereas the single grid method requires

about 1700 iterations, i.e., more than 50% reduction in CPU time for the MG solutions.

The residuals for the calculations of the turbulent S—duct flow with the Baldwin-Lomax
model are presented in Figs. 5.23 and 5.24. The convergence rates are much slower in this
case in comparison to the laminar flow. Nevertheless, the 3-level MG procedures showed
much faster convergence, with a reduction of about 50% in CPU time to reach the same
residual level. Surprisingly, the k — £ model computations showed much faster convergence
rates. Coarse grid computations are presented in Figs. 5.25 and 5.26. In this case only two
level MG cycles could be used. The effect of the CFL number used on the coarser grid is
shown; the higher CFL number of five leads to faster convergence and is thus preferable, but
it has been found to lead to instability and divergence in some problems. The computational
saving in this case is about 30%, with a residual reduction of five orders in magnitude
achieved in about 1,700 iteration with two level MG procedure compared with 4,800
iterations with the single grid method. Corresponding fine grid results are presented in Figs.
5.27 and 5.28. However, due to high computational costs, only residual reductions of two
orders of magnitude with the MG procedure are presented. The single grid computation
produces only one order of magnitude reduction in residuals in the same number of
iterations. By extrapolation, it is estimated that the savings in CPU time for the MG solution

is about 40-50% 1in this case.
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Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

For a numerical scheme it is often the practice that a suitable time step is chosen heuristically
or is obtained based on the results of stability studies of model scalar equations. For
complicated multidimensional problems, however, this approach is not only inaccurate but
also expensive. In this work the stability analysis of the full, coupled 3-D Euler and
Navier-Stokes equations has been investigated for various numerical schemes. These
schemes include three upwind difference based factorizations, namely Spatial, Eigenvalue
and Combination splits, and two central difference based factorizations, namely the LU and
ADI methods. In the former, both the Steger—-Warming and van Leer flux—vector splitting
methods are considered. The range of CFL numbers over whicheach scheme is stable and the

optimum CFL numbers are presented.

In the process of computing the convergence characteristics of the above schemes, a measure
of multigrid performance, namely the smoothing factor, is also evaluated. Computation of
the smoothing factor is, however, restricted to the high frequency range only and does not
incorporate the transfer processes that are fundamental to multigrid methods. The bi—grid
procedure which was mathematically formulated to account for aliasing effects and the
transfer operations has, therefore, been utilized to assess the performance of different
numerical schemes for model problems using the diffusion, convection and linearized
burger’s equations. Compared to bi—grid results, it is observed that the smoothing factor
predicts poorly the performance of certain numerical schemes as smoothers for the multigrid

procedure. Motivated by these results, the bi—grid method is further used to assess the
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performance of multigrid computations of Euler and Navier—Stokes solutions using the

selected numerical schemes. The schemes suitable for multigrid techniques are identified.

The established results from these predictions served as a guide in the implementation of the
multigrid method for numerical computations using the Navier—Stokes equations.
Convergence acceleration to steady state of various 2-D and 3-D test cases ranging from
inviscid to viscous turbulent flows are investigated for different geometries. In general,
multigrid acceleration is found to be more effective in 3-D problems than in 2-D problems.
Saving of up to 60% CPU time are obtained in several of the test cases. Furthermore, it was
observed that for flows that are inherently unsteady, e.g. flows with flapping shocks, the
multigrid technique as implemented failed to accelerate convergence. For such problems,

multigrid implementation has to be modified to accommodate their inherent unsteadiness.

This study cannot be complete without pointing out the directions in which further research
should be performed. Some time—stepping algorithms have been investigated for multigrid
smoothers. It would be highly desirable to compile the smoothing properties of many more
of the popularly used smoothers. In the present work, the bi—grid results have been compared
to either the ideal multigrid sequence in the case of the model Burger’s equation, or the Full
Multigrid method in the case of the upwind and Beam—-Warming ADI methods. Effort should
be made to measure the deviation of some other multigrid cycles from the bi-grid
predictions. Finally, time—dependent multigrid algorithm can be used to solve those

problems that posses inherent unsteadiness.
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APPENDIX A
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APPENDIX B
VISCOUS FLUX JACOBIANS
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APPENDIX C

THE BI-GRID AMPLIFICATION MATRIX M(©)
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and the off-diagonal elements are:
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where, for example,
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Each element is a 5x5 matrix corresponding to the 5 dependent variables.
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APPENDIX D

JCL FOR STABILITY CODES

#QSUB -IM 1.0mW -IT 300
#QSUB —-mb ~me

#QSUB -r stab

#QSUB -s /bin/sh

set —x
ja

#Setup and link necessary input/output files

touch stab3d_sg.out
In stab3d_sg.out fort.22

cf77 —o temp.ex stab3d_sg.f —limsl for single grid stability analysis
or cf77 —o temp.ex stab3d_bg.f —limsl for bi—grid stability analysis
#Run code

temp.ex<<EOD

Single Grid Convergence characteristics for Navier-Stokes equations @ Re = 100
&io

nout = 22, fortran output file
&end
&num
cfls=0, Starting cfl
cfle=30, Stopping cfl
delcfl=2, cfl interval
avsde=1, amount of 4th O explicit artificial viscosity
avs2e=0, amount of 2nd O explicit artificial viscosity, always zero
avs2i=2, amount of implicit artificial viscosity
&end
&flow
ieuler=0, Viscous or inviscid flow
fy=10, fz=10, Aspect Ratios
a_attack=45, a_yaw=45, Angle of Attack, Angle of Yaw
machr=0.5 Reference Mach number
rer=800, Reference Reynolds number
&end
EOD
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APPENDIX E

DIFFERENT MULTIGRID CYCLES

W-Cycle |

Full Multigrid V-Cycle
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